Исследование функции на перегиб. Выпуклость функций. Достаточное условие перегиба

Для определения выпуклости (вогнутости) функции на некотором интервале можно использовать следующие теоремы.

Теорема 1. Пусть функция определена и непрерывна на интервале и имеет конечную производную . Для того, чтобы функция была выпуклой (вогнутой) в , необходимо и достаточно, чтобы ее производная убывала (возрастала) на этом интервале.

Теорема 2. Пусть функция определена и непрерывна вместе со своей производной на и имеет внутри непрерывную вторую производную . Для выпуклости (вогнутости) функции в необходимо и достаточно, чтобы внутри

Докажем теорему 2 для случая выпуклости функции .

Необходимость. Возьмем произвольную точку . Разложим функцию около точки в ряд Тейлора

Уравнение касательной к кривой в точке, имеющей абсциссу :

Тогда превышение кривой над касательной к ней в точке равно

Таким образом, остаток равен величине превышения кривой над касательной к ней в точке . В силу непрерывности , если , то и для , принадлежащих достаточно малой окрестности точки , а потому, очевидно, и для любого отличного от значения , принадлежащего к указанной окрестности.

Значит, график функции лежит выше касательной и кривая выпукла в произвольной точке .

Достаточность. Пусть кривая выпукла на промежутке . Возьмем произвольную точку .

Аналогично предыдущему разложим функцию около точки в ряд Тейлора

Превышение кривой над касательной к ней в точке, имеющей абсциссу , определяемой выражением равно

Так как превышение положительно для достаточно малой окрестности точки , то положительна и вторая производная . При стремлении получаем, что для произвольной точки .

Пример. Исследовать на выпуклость (вогнутость) функцию .

Ее производная возрастает на всей числовой оси, значит по теореме 1 функция вогнута на .

Ее вторая производная , поэтому по теореме 2 функция вогнута на .

3.4.2.2 Точки перегиба

Определение. Точкой перегиба графика непрерывной функции называется точка, разделяющая интервалы, в которых функция выпукла и вогнута.

Из этого определения следует, что точки перегиба - это точки точки экстремума первой производной. Отсюда вытекают следующие утверждения для необходимого и достаточного условий перегиба.

Теорема (необходимое условие перегиба) . Для того чтобы точка являлась точкой перегиба дважды дифференцируемой функции , необходимо, чтобы ее вторая производная в этой точке равнялась нулю () или не существовала.

Теорема (достаточное условие перегиба). Если вторая производная дважды дифференцируемой функции при переходе через некоторую точку меняет знак, то есть точка перегиба.

Отметим, что в самой точке вторая производная может не существовать.

Геометрическая интерпретация точек перегиба иллюстрируется рис. 3.9

В окрестности точки функция выпукла и график ее лежит ниже касательной, проведенной в этой точке. В окрестности точки функция вогнута и график ее лежит выше касательной, проведенной в этой точке. В точке перегиба касательная разделяет график функции на области выпуклости и вогнутости.

3.4.2.3 Исследование функции на выпуклость и наличие точек перегиба

1. Найти вторую производную .

2. Найти точки, в которых вторая производная или не существует.


Рис. 3.9.

3. Исследовать знак второй производной слева и справа от найденных точек и сделать вывод об интервалах выпуклости или вогнутости и наличии точек перегиба.

Пример. Исследовать функцию на выпуклость и наличие точек перегиба.

2. Вторая производная равна нулю при .

3. Вторая производная меняет знак при , значит точка - точка перегиба.

На интервале , значит функция выпукла на этом интервале.

На интервале , значит функция вогнута на этом интервале.

3.4.2.4 Общая схема исследования функций и построения графика

При исследовании функции и построении ее графика рекомендуется использовать следующую схему:

  1. Найти область определения функции.
  2. Исследовать функцию на четность - нечетность. Напомним, что график четной функции симметричен относительно оси ординат, а график нечетной функции симметричен относительно начала координат.
  3. Найти вертикальные асимптоты.
  4. Исследовать поведение функции в бесконечности, найти горизонтальные или наклонные асимптоты.
  5. Найти экстремумы и интервалы монотонности функции.
  6. Найти интервалы выпуклости функции и точки перегиба.
  7. Найти точки пересечения с осями координат.

Исследование функции проводится одновременно с построением ее графика.

Пример. Исследовать функцию и построить ее график.

1. Область определения функции - .

2. Исследуемая функция - четная , поэтому ее график симметричен относительно оси ординат.

3. Знаменатель функции обращается в ноль при , поэтому график функции имеет вертикальные асимптоты и .

Точки являются точками разрыва второго рода, так как пределы слева и справа в этих точках стремятся к .

4. Поведение функции в бесконечности.

Поэтому график функции имеет горизонтальную асимптоту .

5. Экстремумы и интервалы монотонности. Находим первую производную

При , поэтому в этих интервалах функция убывает.

При , поэтому в этих интервалах функция возрастает.

При , поэтому точка является критической точкой.

Находим вторую производную

Так как , то точка является точкой минимума функции .

6. Интервалы выпуклости и точки перегиба.

Функция при , значит на этом интервале функция вогнута.

Функция при , значит на этих интервалах функция выпукла.

Функция нигде не обращается в ноль, значит точек перегиба нет.

7. Точки пересечения с осями координат.

Уравнение , имеет решение , значит точка пересечения графика функции с осью ординат (0, 1).

Уравнение не имеет решения, значит точек пересечения с осью абсцисс нет.

С учетом проведенного исследования можно строить график функции

Схематически график функции изображен на рис. 3.10 .


Рис. 3.10.
3.4.2.5 Асимптоты графика функции

Определение. Асимптотой графика функции называется прямая, обладающая тем свойством, что расстояние от точки () до этой прямой стремится к 0 при неограниченном удалении точки графика от начала координат.

Осталось рассмотреть выпуклость, вогнутость и перегибы графика . Начнём с так полюбившихся посетителям сайта физических упражнений. Пожалуйста, встаньте и наклонитесь вперёд либо назад. Это выпуклость. Теперь вытяните руки перед собой ладонями вверх и представьте, что держите на груди большое бревно… …ну, если не нравится бревно, пусть будет ещё что/кто-нибудь =) Это вогнутость. В ряде источников встречаются синонимичные термины выпуклость вверх и выпуклость вниз , но я сторонник коротких названий.

! Внимание : некоторые авторы определяют выпуклость и вогнутость с точностью до наоборот . Это математически и логически тоже верно, но зачастую совершенно некорректно с содержательной точки зрения, в том числе на уровне нашего обывательского понимания терминов. Так, например, двояковыпуклой линзой называют линзу именно «с бугорками», но никак не со «вдавленностями» (двояковогнутость).
А, скажем, «вогнутая» кровать – она всё-таки явно не «торчит вверх» =) (однако если под неё залезть, то речь уже зайдёт о выпуклости;=)) Я придерживаюсь подхода, который соответствует естественным человеческим ассоциациям.

Формальное определение выпуклости и вогнутости графика достаточно труднО для чайника, поэтому ограничимся геометрической интерпретацией понятия на конкретных примерах. Рассмотрим график функции , которая непрерывна на всей числовой прямой:

Его легко построить с помощью геометрических преобразований , и, наверное, многие читатели в курсе, как он получен из кубической параболы.

Назовём хордой отрезок, соединяющий две различные точки графика.

График функции является выпуклым на некотором интервале, если он расположен не ниже любой хорды данного интервала. Подопытная линия выпукла на , и, очевидно, что здесь любая часть графика расположена НАД своей хордой . Иллюстрируя определение, я провёл три чёрных отрезка.

График функции являются вогнутым на интервале, если он расположен не выше любой хорды этого интервала. В рассматриваемом примере пациент вогнут на промежутке . Пара коричневых отрезков убедительно демонстрирует, что тут и любой кусок графика расположен ПОД своей хордой .

Точка графика, в которой он меняет выпуклость на вогнутость или вогнутость на выпуклость, называется точкой перегиба . У нас она в единственном экземпляре (первый случай), причём, на практике под точкой перегиба можно подразумевать как зелёную точку , принадлежащую самой линии, так и «иксовое» значение .

ВАЖНО! Перегибы графика следует изображать аккуратно и очень плавно . Недопустимы всевозможные «неровности» и «шероховатости». Дело за небольшой тренировкой.

Второй подход к определению выпуклости/вогнутости в теории даётся через касательные:

Выпуклый на интервале график расположен не выше касательной, проведённой к нему в произвольной точке данного интервала. Вогнутый же на интервале график – не ниже любой касательной на этом интервале.

Гипербола вогнута на интервале и выпукла на :

При переходе через начало координат вогнутость меняется на выпуклость, однако точку НЕ СЧИТАЮТ точкой перегиба, так как функция не определена в ней.

Более строгие утверждения и теоремы по теме можно найти в учебнике, а мы переходим к насыщенной практической части:

Как найти интервалы выпуклости, интервалы вогнутости
и точки перегиба графика?

Материал прост, трафаретен и структурно повторяет исследование функции на экстремум .

Выпуклость/вогнутость графика характеризует вторая производная функции .

Пусть функция дважды дифференцируема на некотором интервале. Тогда:

– если вторая производная на интервале, то график функции является выпуклым на данном интервале;

– если вторая производная на интервале, то график функции является вогнутым на данном интервале.

На счёт знаков второй производной по просторам учебных заведений гуляет доисторическая ассоциация: «–» показывает, что «в график функции нельзя налить воду» (выпуклость),
а «+» – «даёт такую возможность» (вогнутость).

Необходимое условие перегиба

Если в точке есть перегиб графика функции , то:
либо значения не существует (разберём, читайте!) .

Данная фраза подразумевает, что функция непрерывна в точке и в случае – дважды дифференцируема в некоторой её окрестности.

Необходимость условия говорит о том, что обратное справедливо не всегда. То есть из равенства (либо небытия значения ) ещё не следует существования перегиба графика функции в точке . Но и в той, и в другой ситуации называют критической точкой второй производной .

Достаточное условие перегиба

Если вторая производная при переходе через точку меняет знак, то в данной точке существует перегиб графика функции .

Точек перегиба (встретился уже пример) может не быть вовсе, и в этом смысле показательны некоторые элементарные образцы. Проанализируем вторую производную функции :

Получена положительная функция-константа, то есть для любого значения «икс» . Факты, лежащие на поверхности: парабола вогнута на всей области определения , точки перегиба отсутствуют. Легко заметить, что отрицательный коэффициент при «переворачивает» параболу и делает её выпуклой (о чём нам сообщит вторая производная – отрицательная функция-константа).

Экспоненциальная функция также вогнута на :

для любого значения «икс».

Точек перегиба у графика , разумеется, нет.

Исследуем на выпуклость/вогнутость график логарифмической функции :

Таким образом, ветка логарифма является выпуклой на интервале . Вторая производная определена и на промежутке , но рассматривать его НЕЛЬЗЯ , поскольку данный интервал не входит в область определения функции . Требование очевидно – коль скоро там нет графика логарифма, то ни о какой выпуклости/вогнутости/перегибах речи, естественно, не заходит.

Как видите, всё действительно очень напоминает историю с возрастанием, убыванием и экстремумами функции . Похож и сам алгоритм исследования графика функции на выпуклость, вогнутость и наличие перегибов :

2) Разыскиваем критические значения. Для этого берём вторую производную и решаем уравнение . Точки, в которых не существует 2-й производной, но которые входят в область определения самой функции – тоже считаются критическими!

3) Отмечаем на числовой прямой все найденные точки разрыва и критические точки (ни тех, ни других может не оказаться – тогда чертить ничего не надо (как и в слишком простом случае), достаточно ограничиться письменным комментарием) . Методом интервалов определяем знаки на полученных интервалах. Как только что пояснялось, рассматривать следует только те промежутки, которые входят в область определения функции . Делаем выводы о выпуклости/вогнутости и точках перегиба графика функции . Даём ответ.

Попытайтесь устно применить алгоритм для функций . Во втором случае, кстати, пример, когда в критической точке не существует перегиба графика. Впрочем, начнём с ненамного более сложных заданий:

Пример 1


Решение :
1) Функция определена и непрерывна на всей числовой прямой. Очень хорошо.

2) Найдём вторую производную. Можно предварительно выполнить возведение в куб, но значительно выгоднее использовать правило дифференцирование сложной функции :

Заметьте, что , а значит, функция является неубывающей . Хоть это и не относится к заданию, но на такие факты всегда желательно обращать внимание.

Найдём критические точки второй производной:

– критическая точка

3) Проверим выполнение достаточного условия перегиба. Определим знаки второй производной на полученных интервалах .

Внимание! Сейчас работаем со второй производной (а не с функцией!)

В результате получена одна критическая точка: .

3) Отметим на числовой прямой две точки разрыва, критическую точку и определим знаки второй производной на полученных интервалах:

Напоминаю важный приём метода интервалов , позволяющий значительно ускорить решение. Вторая производная получилась весьма громоздкой, поэтому не обязательно рассчитывать её значения, достаточно сделать «прикидку» на каждом интервале. Выберем, например, точку , принадлежащее левому промежутку,
и выполним подстановку:

Теперь анализируем множители:

Два «минуса» и «плюс» дают «плюс», поэтому , а значит, вторая производная положительна и на всём интервале .

Закомментированные действия несложно выполнить устно. Кроме того, множитель выгодно игнорировать вообще – он положителен при любом «икс» и не оказывает влияния на знаки нашей второй производной.

Итак, какую информацию нам предоставила ?

Ответ : график функции является вогнутым на и выпуклым на . В начале координат (ясно, что ) существует перегиб графика.

При переходе через точки вторая производная тоже меняет знак, но они не считаются точками перегиба, так как функция терпит в них бесконечные разрывы .

В разобранном примере первая производная сообщает нам о росте функции на всей области определения . Всегда бы такая халява =) Кроме того, очевидно наличие трёх асимптот . Данных получено много, что позволяет с высокой степенью достоверности представить внешний вид графика. До кучи, функция ещё и нечётная. Исходя из установленных фактов, попытайтесь выполнить набросок на черновике. Картинка в конце урока.

Задание для самостоятельного решения:

Пример 6

Исследовать график функции на выпуклость, вогнутость и найти точки перегиба графика, если они существует.

Чертежа в образце нет, но гипотезу выдвинуть не возбраняется;)

Шлифуем материал, не нумеруя пункты алгоритма:

Пример 7

Исследовать график функции на выпуклость, вогнутость и найти точки перегиба, если они существует.

Решение : функция терпит бесконечный разрыв в точке .

У нас как обычно, всё отлично:

Производные не самые трудные, главное быть внимательным с их «причёской».
В наведённом марафете обнаруживаются две критические точки второй производной:

Определим знаки на полученных интервалах:

В точке существует перегиб графика, найдём ординату точки:

При переходе через точку вторая производная не меняет знак, следовательно, в ней НЕТ перегиба графика.

Ответ : интервалы выпуклости: ; интервал вогнутости: ; точка перегиба: .

Рассмотрим заключительные примеры с дополнительными примочками:

Пример 8

Найти интервалы выпуклости, вогнутости и точки перегиба графика

Решение : с нахождением области определения особых проблем не возникает:
, при этом в точках функция терпит разрывы.

Идём проторенной дорогой:

– критическая точка.

Определим знаки , при этом рассматриваем интервалы только из области определения функции :

В точке существует перегиб графика, вычислим ординату:


При исследовании функции и построении ее графика на одном из этапов мы определяем точки перегиба и интервалы выпуклости. Эти данные вместе с промежутками возрастания и убывания позволяют схематично представить график исследуемой функции.

Дальнейшее изложение подразумевает, что Вы умеете до некоторого порядка и разных видов.

Изучение материала начнем с необходимых определений и понятий. Далее озвучим связь между значением второй производной функции на некотором интервале и направлением ее выпуклости. После этого перейдем к условиям, которые позводляют определять точки перегиба графика функции. По тексту будем приводить характерные примеры с подробными решениями.

Навигация по странице.

Выпуклость, вогнутость функции, точка перегиба.

Определение.

выпуклой вниз на интервале Х , если ее график расположен не ниже касательной к нему в любой точке интервала Х .

Определение.

Дифференцируемая функция называется выпуклой вверх на интервале Х , если ее график расположен не выше касательной к нему в любой точке интервала Х .

Выпуклую вверх функцию часто называют выпуклой , а выпуклую вниз – вогнутой .

Посмотрите на чертеж, иллюстрирующий эти определения.

Определение.

Точка называется точкой перегиба графика функции y=f(x) , если в данной точке существует касательная к графику функции (она может быть параллельна оси Оу ) и существует такая окрестность точки , в пределах которой слева и справа от точки М график функции имеет разные направления выпуклости.

Другими словами, точка М называется точкой перегиба графика функции, если в этой точке существует касательная и график функции меняет направление выпуклости, проходя через нее.

Если необходимо, обратитесь к разделу , чтобы вспомнить условия существования невертикальной и вертикальной касательной.

На рисунке ниже представлены несколько примеров точек перегиба (отмечены красными точками). Заметим, что некоторые функции могут не иметь точек перегиба, а другие могут иметь одну, несколько или бесконечно много точек перегиба.


Нахождение интервалов выпуклости функции.

Сформулируем теорему, которая позволяет определять промежутки выпуклости функции.

Теорема.

Если функция y=f(x) имеет конечную вторую производную на интервале Х и если выполняется неравенство (), то график функции имеет выпуклость направленную вниз (вверх) на Х .

Эта теорема позволяет находитьть промежутки вогнутости и выпуклости функции, нужно лишь на области определения исходной функции решить неравенства и соответственно.

Следует отметить, что точки, в которых функция y=f(x) определена, а вторая производная не существует, будем включать в интервалы вогнутости и выпуклости.

Разберемся с этим на примере.

Пример.

Выяснить промежутки, на которых график функции имеет выпуклость направленную вверх и выпуклость направленную вниз.

Решение.

Область определения функции - это все множество действительных чисел.

Найдем вторую производную.

Область определения второй производной совпадает с областью определения исходной функции, поэтому, чтобы выяснить интервалы вогнутости и выпуклости, достаточно решить и соответственно.

Следовательно, функция выпуклая вниз на интервале и выпуклая вверх на интервале .

Графическая иллюстрация.

Часть графика функции на интервале выпуклости изображена синим цветом, на интервале вогнутости – красным цветом.

Сейчас рассмотрим пример, когда область определения второй производной не совпадает с областью определения функции. В этом случае, как мы уже отмечали, точки области определения, в которых не существует конечная вторая производная, следует включать в интервалы выпуклости и (или) вогнутости.

Пример.

Найти промежутки выпуклости и вогнутости графика функции .

Решение.

Начнем с области определения функции:

Найдем вторую производную:

Областью определения второй производной является множество . Как видите, x=0 принадлежит области определения исходной функции, но не принадлежит области определения второй производной. Не забывайте про эту точку, ее нужно будет включить в интервал выпуклости и (или) вогнутости.

Теперь решаем неравенства и на области определения исходной функции. Применим . Числитель выражения обращается в ноль при или , знаменатель – при x = 0 или x = 1 . Схематично наносим эти точки на числовую прямую и выясняем знак выражения на каждом из интервалов, входящих в область определения исходной функции (она показана заштрихованной областью на нижней числовой прямой). При положительном значении ставим знак «плюс», при отрицательном – знак «минус».

Таким образом,

и

Следовательно, включив точку x=0 , получаем ответ.

При график функции имеет выпуклость направленную вниз, при - выпуклость направленную вверх.

Графическая иллюстрация.

Часть графика функции на интервале выпуклости изображена синим цветом, на интервалах вогнутости – красным цветом, черной пунктирной прямой является вертикальная асимптота.

Необходимое и достаточные условия перегиба.

Необходимое условие перегиба.

Сформулируем необходимое условие перегиба графика функции.

Пусть график функции y=f(x) имеет перегиб в точке и имеет при непрерывную вторую производную, тогда выполняется равенство .

Из этого условия следует, что абсциссы точек перегиба следует искать среди тех, в которых вторая производная функции обращается в ноль. НО, это условие не является достаточным, то есть не все значения , в которых вторая производная равна нулю, являются абсциссами точек перегиба.

Еще следует обратить внимание, что по определению точки перегиба требуется существование касательной прямой, можно и вертикальной. Что это означает? А означает это следующее: абсциссами точек перегиба могут быть все из области определения функции, для которых и . Обычно это точки, в которых знаменатель первой производной обращается в ноль.

Первое достаточное условие перегиба.

После того как найдены все , которые могут быть абсциссами точек перегиба, следует воспользоваться первым достаточным условием перегиба графика функции.

Пусть функция y=f(x) непрерывна в точке , имеет в ней касательную (можно вертикальную) и эта функция имеет вторую производную в некоторой окрестности точки . Тогда, если в пределах этой окрестности слева и справа от , вторая производная имеет разные знаки, то является точкой перегиба графика функции.

Как видите первое достаточное условие не требует существования второй производной в самой точке , но требует ее существование в окрестности точки .

Сейчас обобщим всю информацию в виде алгоритма.

Алгоритм нахождения точек перегиба функции.

Находим все абсциссы возможных точек перегиба графика функции ( или и ) и выясняем, проходя через какие вторая производная меняет знак. Такие значения и будут абсциссами точек перегиба, а соответствующие им точки будут точками перегиба графика функции.

Рассмотрим два примера нахождения точек перегиба для разъяснения.

Пример.

Найти точки перегиба и интервалы выпуклости и вогнутости графика функции .

Решение.

Областью определения функции является все множество действительных чисел.

Найдем первую производную:

Областью определения первой производной также является все множество действительных чисел, поэтому равенства и не выполняется ни для каких .

Найдем вторую производную:

Выясним при каких значениях аргумента x вторая производная обращается в ноль:

Таким образом, абсциссами возможных точек перегиба являются x=-2 и x=3 .

Теперь осталось проверить по достаточному признаку перегиба, в каких из этих точек вторая производная меняет знак. Для этого нанесем точки x=-2 и x=3 на числовую ось и, как в обобщенном методе интервалов , расставим знаки второй производной над каждым промежутком. Под каждым интервалом схематично дугами показано направление выпуклости графика функции.

Вторая производная меняет знак с плюса на минус, проходя через точку x=-2 слева направо, и меняет знак с минуса на плюс, проходя через x=3 . Следовательно, и x=-2 и x=3 являются абсциссами точек перегиба графика функции. Им соответствуют точки графика и .

Взглянув еще раз на числовую ось и знаки второй производной на ее промежутках, можно делать вывод об интервалах выпуклости и вогнутости. График функции выпуклый на интервале и вогнутый на интервалах и .

Графическая иллюстрация.

Часть графика функции на интервале выпуклости изображена синим цветом, на интервалах вогнутости – красным цветом, точки перегиба показаны черными точками.

Пример.

Найдите абсциссы всех точек перегиба графика функции .

Решение.

Областью определения данной функции является все множество действительных чисел.

Найдем производную.

Первая производная, в отличии от исходной функции, не определена при x=3 . Но и . Следовательно, в точке с абсциссой x=3 существует вертикальная касательная к графику исходной функции. Таким образом, x=3 может быть абсциссой точки перегиба графика функции.

Находим вторую производную, область ее определения и точки, в которых она обращается в ноль:

Получили еще две возможные абсциссы точек перегиба. Отмечаем все три точки на числовой прямой и определяем знак второй производной на каждом из полученных интервалов.

Вторая производная меняет знак, проходя через каждую из точек, следовательно, все они являются абсциссами точек перегиба.

Графическая иллюстрация.

Части графика функции на интервалах выпуклости изображены синим цветом, на интервалах вогнутости – красным цветом, точки перегиба показаны черными точками.

Первое достаточное условие перегиба графика функции позволяет определять точки перегиба и не требуют существования второй производной в них. Поэтому, первое достаточное условие можно считать универсальным и самым используемым.

Сейчас сформулируем еще два достаточных условия перегиба, но они применимы лишь при существовании конечной производной в точке перегиба до некоторого порядка.

Второе достаточное условие перегиба.

Если , а , тогда является абсциссой точки перегиба графика функции y=f(x) x=3 отлично от нуля.

Очевидно, что значение третьей производной отлично от нуля для любых x , в том числе и для x=3 . Поэтому, по второму достаточному условию перегиба графика функции, точка является точкой перегиба.

Графическая иллюстрация.

Третье достаточное условие перегиба.

Пусть , а , тогда если n – четное число, то является абсциссой точки перегиба графика функции y=f(x) .

Пример.

Найдите точки перегиба графика функции .

Решение.

Функция определена на всем множестве действительных чисел.

Найдем ее производную: . Очевидно, что она также определена для всех действительных x , поэтому, в любой из точек ее графика существует невертикальная касательная.

Определим значения х , при которых вторая производная обращается в ноль.

Таким образом, в точке с абсциссой x=3 может быть перегиб графика функции. Чтобы убедиться в том, что х=3 действительно абсцисса точки перегиба, воспользуемся третьим достаточным условием.

По третьему достаточному условию перегиба графика функции имеем n=4 (пятая производная обращается в ноль) – четное, поэтому x=3 является абсциссой точки перегиба и ей соответствует точка графика функции (3;1) .

Графическая иллюстрация.

Часть графика функции на интервале выпуклости изображена синим цветом, на интервале вогнутости – красным цветом, точка перегиба показана черной точкой.


Общая схема исследования функции и построение графика.
1. Исследование функции на выпуклость и вогнутость.


  1. Асимптоты графика функции.

Введение.

В школьном курсе математики вы уже встречались с необходимостью построения графиков функций. В , вы использовали способ построения по точкам. Следует отметить, что он прост по идее и сравнительно быстро приводит к цели. В случаях, когда функция непрерывна и изменяется довольно плавно, такой способ может обеспечить и необходимую степень точности графического представления. Для этого нужно брать побольше точек, чтобы достичь определённой густоты их размещения.

Предположим теперь, что функция в отдельных местах имеет особенности в своём «поведении»: либо её значения где-то на малом участке резко меняются, либо имеют место разрывы. Наиболее существенные части графика таким способом могут и не быть обнаружены.

Это обстоятельство и снижает ценность способа построения графика «по точкам».

Существует второй способ построения графиков, основанный на аналитическом исследовании функций. Он выгодно отличается от способа, рассмотренного в школьном курсе математики.

1. Исследование функции на выпуклость и вогнутость .

Пусть функция
дифференцируема на интервале (а, в). Тогда существует касательная к графику функции в любой точке
этого графика (
), причем касательная не параллельна оси OY , так как ее угловой коэффициент, равный
, конечен.

О
пределение
Будем говорить, что график функции
на (а, в) имеет выпускать, направленную вниз (вверх), если он расположен не ниже (не выше) любой касательной к графику функции на (а, в).

а) вогнутая кривая б) выпуклая кривая


Теорема 1 (необходимое условие выпуклости (вогнутости) кривой).

Если график дважды дифференцируемой функции выпуклая (вогнутая) кривая , то вторая производная на интервале (а, в) отрицательна (положительна) на этом интервале.


Теорема 2 (достаточное условие выпуклости (вогнутости) кривой).

Если функция дважды дифференцируема на (а, в) и
(
) во всех точках этого интервала, то кривая, являющаяся графиком функции выпуклая (вогнутая) на этом интервале.


  1. Точки перегиба графика функции.

Определение Точка
называется точкой перегиба графика функции , если в точке
график имеет касательную, и существует такая окрестность точки , в пределах которой график функции слева и справа точки имеет разные направления выпуклости.

Очевидно, что в точке перегиба касательная пересекает график функции, так как с одной стороны от этой точки график лежит над касательной, а с другой – под нею, т. е. в окрестности точки перегиба график функции геометрически переходит с одной стороны касательной на другую и «перегибается» через нее. Отсюда и произошло название «точки перегиба».


Теорема 3 (необходимое условие точки перегиба). Пусть график функции имеет перегиб в точке и пусть функция имеет в точке непрерывную вторую производную. Тогда
.
Не всякая точка , для которой , является точкой перегиба. Например, график функции
не имеет перегиба в точке (0, 0), хотя
при
. Поэтому равенство нулю второй производной является лишь необходимым условием перегиба.


Точки графика, для которых называется критическими точками II -го рода. Необходимо дополнительно исследовать вопрос о наличии перегибав каждой критической точке.

Теорема 4 (достаточное условие точки перегиба). Пусть функция имеет вторую производную в некоторой окрестности точки . Тогда, если в пределах указанной окрестности
имеет разные знаки слева и справа от точки , то график имеет перегиб в точке .
Замечание. Теорема остается верной, если
имеет вторую производную в некоторой окрестности точки , за исключением самой точки , и существует касательная к графику функции в точке
. Тогда, если в пределах указанной окрестности имеет разные знаки слева и справа от точки , то график к функции имеет перегиб в точке .
Схема исследования функции на выпуклость, вогнутость, точки перегиба.

Пример. Исследовать функцию
на выпуклость, вогнутость, точки перегиба.
1.

2.
,
=

3. не существует при




)

1

(1, +)



-



+



1

  1. Асимптоты графика функции.

При исследовании поведения функции при
или вблизи точек разрыва 2-го рода, часто оказывается, что график функции сколь угодно близко приближается к той или иной прямой. Такие прямые называют.


Определение 1. Прямая называется асимптотой кривой L, если расстояние от точки кривой до этой прямой стремится к нулю при удалении точки по кривой к бесконечности. Существует три вида асимптот: вертикальные, горизонтальные, наклонные.

Определение 2. Прямая
называется вертикальной асимптотой графика функции , если хотя бы один из односторонних пределов равен
, т. е. или

Например, график функции
имеет вертикальную асимптоту
, т. к.
, а
.


Определение 3. Прямая у=А называется горизонтальной асимптотой графика функции при
если
.

Например, график функции имеет горизонтальную асимптоту у=0 , т. к.
.


Определение 4. Прямая
(
) называется наклонной асимптотой графика функции при
если
;

Если хотя бы один из пределов не существует, то кривая асимптот не имеет. Если, то следует искать эти пределы отдельно, при и
.


Например. Найти асимптоты графика функции

; х=0 – вертикальная асимптота

;
.

- наклонная асимптота.
4. Схема полного исследования функции и построение графика.

Рассмотрим примерную схему по которой целесообразно исследовать поведение функции и строить ее график.



Пример. Исследовать функцию
и построить ее график.

1. , кроме х=-1.

2.
функция ни четная ни нечетная


-

-



+

+

y

-4


т р.

0




Заключение.
Важной особенностью рассмотренного способа является то, что в его основе лежит прежде всего обнаружение и изучение характерных особенностей в поведении кривой. Места, где функция изменяется плавно, не изучаются особенно подробно, да и нет надобности в таком изучении. Зато те места , где функция имеет какие-либо особенности в поведении, подлежат полному исследованию и максимально точному графическому изображению. Этими особенностями являются точки максимума, минимума, точки разрыва функции и др.

Определение направления вогнутости и перегибов, а также указанный способ нахождения асимптот дают возможность провести исследование функций ещё более детально и получить более точное представление об их графиках.

С помощью онлайн-калькулятора можно найти точки перегиба и промежутки выпуклости графика функции с оформлением решения в Word . Является ли функция двух переменных f(x1,x2) выпуклой решается с помощью матрицы Гессе .

Правила ввода функций :

Направление выпуклости графика функции. Точки перегиба

Определение : Кривая y=f(x) называется выпуклой вниз в промежутке (a; b), если она лежит выше касательной в любой точке этого промежутка.

Определение : Кривая y=f(x) называется выпуклой вверх в промежутке (a; b), если она лежит ниже касательной в любой точке этого промежутка.

Определение : Промежутки, в которых график функции обращен выпуклостью вверх или вниз, называются промежутками выпуклости графика функции.

Выпуклость вниз или вверх кривой, являющейся графиком функции y=f(x) , характеризуется знаком ее второй производной: если в некотором промежутке f’’(x) > 0, то кривая выпукла вниз на этом промежутке; если же f’’(x) < 0, то кривая выпукла вверх на этом промежутке.

Определение: Точка графика функции y=f(x) , разделяющая промежутки выпуклости противоположных направлений этого графика, называется точкой перегиба.

Точками перегиба могут служить только критические точки II рода, т.е. точки, принадлежащие области определения функции y = f(x) , в которых вторая производная f’’(x) обращается в нуль или терпит разрыв.

Правило нахождения точек перегиба графика функции y = f(x)

  1. Найти вторую производную f’’(x) .
  2. Найти критические точки II рода функции y=f(x) , т.е. точки, в которой f’’(x) обращается в нуль или терпит разрыв.
  3. Исследовать знак второй производной f’’(x) в промежутка, на которые найденные критические точки делят область определения функции f(x) . Если при этом критическая точка x 0 разделяет промежутки выпуклости противоположных направлений, то x 0 является абсциссой точки перегиба графика функции.
  4. Вычислить значения функции в точках перегиба.

Пример 1 . Найти промежутки выпуклости и точки перегиба следующей кривой: f(x) = 6x 2 –x 3 .
Решение: Находим f ‘(x) = 12x – 3x 2 , f ‘’(x) = 12 – 6x.
Найдем критические точки по второй производной, решив уравнение 12-6x=0 . x=2 .


f(2) = 6*2 2 – 2 3 = 16
Ответ: Функция выпукла вверх при x∈(2; +∞) ; функция выпукла вниз при x∈(-∞; 2) ; точка перегиба (2;16) .

Пример 2 . Имеет ли точки перегиба функция: f(x)=x 3 -6x 2 +2x-1

Пример 3 . Найти промежутки, на которых график функции является выпуклым и выгнутым: f(x)=x 3 -6x 2 +12x+4