Неопределенное интегрирование подстановкой и по частям. Методы решения неопределенных интегралов. I. Метод непосредственного интегрирования

Решение интегралов - задача легкая, но только для избранных. Эта статья для тех, кто хочет научиться понимать интегралы, но не знает о них ничего или почти ничего. Интеграл... Зачем он нужен? Как его вычислять? Что такое определенный и неопределенный интегралы? Если единственное известное вам применение интеграла – доставать крючком в форме значка интеграла что-то полезное из труднодоступных мест, тогда добро пожаловать! Узнайте, как решать интегралы и почему без этого никак нельзя обойтись.

Изучаем понятие "интеграл"

Интегрирование было известно еще в Древнем Египте. Конечно, не в современном виде, но все же. С тех пор математики написали очень много книг по этой теме. Особенно отличились Ньютон и Лейбниц , но суть вещей не изменилась. Как понять интегралы с нуля? Никак! Для понимания этой темы все равно понадобятся базовые знания основ математического анализа. Сведения о , необходимые и для понимания интегралов, уже есть у нас в блоге.

Неопределенный интеграл

Пусть у нас есть какая-то функция f(x) .

Неопределенным интегралом функции f(x) называется такая функция F(x) , производная которой равна функции f(x) .

Другими словами интеграл – это производная наоборот или первообразная. Кстати, о том, как читайте в нашей статье.


Первообразная существует для всех непрерывных функций. Также к первообразной часто прибавляют знак константы, так как производные функций, различающихся на константу, совпадают. Процесс нахождения интеграла называется интегрированием.

Простой пример:

Чтобы постоянно не высчитывать первообразные элементарных функций, их удобно свести в таблицу и пользоваться уже готовыми значениями.

Полная таблица интегралов для студентов


Определенный интеграл

Имея дело с понятием интеграла, мы имеем дело с бесконечно малыми величинами. Интеграл поможет вычислить площадь фигуры, массу неоднородного тела, пройденный при неравномерном движении путь и многое другое. Следует помнить, что интеграл – это сумма бесконечно большого количества бесконечно малых слагаемых.

В качестве примера представим себе график какой-нибудь функции. Как найти площадь фигуры, ограниченной графиком функции?


С помощью интеграла! Разобьем криволинейную трапецию, ограниченную осями координат и графиком функции, на бесконечно малые отрезки. Таким образом фигура окажется разделена на тонкие столбики. Сумма площадей столбиков и будет составлять площадь трапеции. Но помните, что такое вычисление даст примерный результат. Однако чем меньше и уже будут отрезки, тем точнее будет вычисление. Если мы уменьшим их до такой степени, что длина будет стремиться к нулю, то сумма площадей отрезков будет стремиться к площади фигуры. Это и есть определенный интеграл, который записывается так:


Точки а и b называются пределами интегрирования.


Бари Алибасов и группа "Интеграл"

Кстати! Для наших читателей сейчас действует скидка 10% на

Правила вычисления интегралов для чайников

Свойства неопределенного интеграла

Как решать неопределенный интеграл? Здесь мы рассмотрим свойства неопределенного интеграла, которые пригодятся при решении примеров.

  • Производная от интеграла равна подынтегральной функции:

  • Константу можно выносить из-под знака интеграла:

  • Интеграл от суммы равен сумме интегралов. Верно также для разности:

Свойства определенного интеграла

  • Линейность:

  • Знак интеграла изменяется, если поменять местами пределы интегрирования:

  • При любых точках a , b и с :

Мы уже выяснили, что определенный интеграл - это предел суммы. Но как получить конкретное значение при решении примера? Для этого существует формула Ньютона-Лейбница:

Примеры решения интегралов

Ниже рассмотрим несколько примеров нахождения неопределенных интегралов. Предлагаем самостоятельно разобраться в тонкостях решения, а если что-то непонятно, задавайте вопросы в комментариях.


Для закрепления материала посмотрите видео о том, как решаются интегралы на практике. Не отчаиваетесь, если интеграл не дается сразу. Обратитесь в профессиональный сервис для студентов, и любой тройной или криволинейный интеграл по замкнутой поверхности станет вам по силам.

Калькулятор решает интегралы c описанием действий ПОДРОБНО на русском языке и бесплатно!

Решение неопределённых интегралов

Это онлайн сервис в один шаг :

Решение определённых интегралов

Это онлайн сервис в один шаг :

  • Ввести подинтегральное выражение (подинтегральную функцию)
  • Ввести нижний предел для интеграла
  • Ввести верхний предел для интеграла

Решение двойных интегралов

  • Ввести подинтегральное выражение (подинтегральную функцию)

Решение несобственных интегралов

  • Ввести подинтегральное выражение (подинтегральную функцию)
  • Введите верхнюю область интегрирования (или + бесконечность)
  • Ввести нижнюю область интегрирования (или - бесконечность)

Решение тройных интегралов

  • Ввести подинтегральное выражение (подинтегральную функцию)
  • Ввести нижний и верхний пределы для первой области интегрирования
  • Ввести нижний и верхний предел для второй области интегрирования
  • Ввести нижний и верхний предел для третьей области интегрирования

Данный сервис позволяет проверить свои вычисления на правильность

Возможности

  • Поддержка всех возможных математических функций: синус, косинус, экспонента, тангенс, котангенс, корень квадратный и кубический, степени, показательные и другие.
  • Есть примеры для ввода, как для неопределённых интегралов, так и для несобственных и определённых.
  • Исправляет ошибки в ведённых вами выражениях и предлагает свои варианты для ввода.
  • Численное решение для определённых и несобственных интегралов (в том числе для двойных и тройных интегралов).
  • Поддержка комплексных чисел, а также различных параметров (вы можете указывать в подинтегральном выражении не только переменную интегрирования, но и другие переменные-параметры)

Непосредственное интегрирование

Основные формулы интегрирования

1. С – константа 1*.
2. , n ≠ –1
3. +С
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.

Вычисление интегралов с помощью непосредственного использования таблицы простейших интегралов и основных свойств неопределенных интегралов называется непосредственным интегрированием .

Пример 1.

Пример 2.

Пример 3.

Это наиболее распространенный метод интегрирования сложной функции, состоящий в преобразовании интеграла с помощью перехода к другой переменной интегрирования.

Если интеграл затруднительно привести к табличному с помощью элементарных преобразований, то в этом случае пользуются методом подстановки. Сущность этого метода заключается в том, что путём введения новой переменной удаётся свести данный интеграл к новому интегралу, который сравнительно легко берётся непосредственно.

Для интегрирования методом подстановки используют схему решения:

2) найти дифференциал от обеих частей замены;

3) всё подынтегральное выражение выразить через новую переменную (после чего должен получиться табличный интеграл);

4) найти полученный табличный интеграл;

5) выполнить обратную замену.

Найдите интегралы:

Пример 1 . Подстановка: cosx=t, -sinxdx = dt,

Решение:

Пример 2. ∫e -x3 x 2 dx Подстановка: -x 3 =t, -3x 2 dx=dt, Решение: ∫e -x3 x 2 dx=∫e t (-1/3)dt=-1/3e t +C=-1/3e -x3 +C

Пример 3. Подстановка: 1+sinx=t , cosxdx=dt ,

Решение: .

РАЗДЕЛ 1.5. Определенный интеграл, методы его вычисления.

п.1 Понятие определенного интеграла

Задача. Найти приращение функции, первообразной для функции f(x) , при переходе аргумента x от значения a к значению b .

Решение . Положим, что интегрированием найдено: (x)dx = F(x)+C.

Тогда F(x)+C 1 , где С 1 - любое данное число, будет одной из первообразных функций для данной функции f(x) . Найдем её приращение при переходе аргумента от значения a к значению b . Получим:

x=b - x=a =F(b) +C 1 - F(a) -C 1 =F(b)-F(a)

Как видим, в выражении приращения первообразной функции F(x)+C 1 отсутствует постоянная величина C 1 . А так как под C 1 подразумевалось любое данное число, то полученный результат приводит к следующему заключению: при переходе аргумента x от значения x=a к значению x=b все функции F(x)+C , первообразные для данной функции f(x) , имеют одно и то же приращение, равное F(b)-F(a) .



Это приращение принято называть определенным интегралом и обозначать символом: и читается: интеграл от а до b от функции f(x) по dх или, короче, интеграл от а до b от f(х)dх.

Число а называется нижним пределом интегрирования, число b - верхним ; отрезок а ≤ x ≤ b – отрезком интегрирования. Предполагается при этом, что подынтегральная функция f(x) непрерывна при всех значениях x , удовлетворяющих условиям: a x b

Определение. Приращение первообразных функций F(x)+C при переходе аргумента x от значения x=a к значению x=b , равное разности F(b)-F(a) , называется определенным интегралом и обозначается символом: так, что если (x)dx = F(x)+C, то = F(b)-F(a) - данное равенство называется формулой Ньютона - Лейбница.

п.2 Основные свойства определённого интеграла

Все свойства сформулированы в предложении, что рассматриваемые функции интегрируемы в соответствующих промежутках.

п. 3 Непосредственное вычисление определенного интеграла

Для вычисления определённого интеграла, когда можно найти соответствующий неопределенный интеграл, служит формула Ньютона – Лейбница

т.е. определённый интеграл равен разности значений любой первообразной функции при верхнем и нижнем пределах интегрирования.

Из этой формулы виден порядок вычисления определенного интеграла:

1) найти неопределенный интеграл от данной функции;

2) в полученную первообразную подставить вместо аргумента сначала верхний, затем нижний предел интеграла;

3) из результата подстановки верхнего предела вычесть результат подстановки нижнего предела.

Пример 1: Вычислить интеграл:

Пример 2: Вычислить интеграл:

п.4 Вычисление определенного интеграла методом подстановки

Вычисление определенного интеграла методом подстановки состоит в следующем:

1) часть подынтегральной функции заменить новой переменной;

2) найти новые пределы определенного интеграла;

3) найти дифференциал от обеих частей замены;

4) всё подынтегральное выражение выразить через новую переменную (после чего должен получиться табличный интеграл); 5) вычислить полученный определенный интеграл.

Пример 1: Вычислить интеграл:

Подстановка: 1+cosx=t, -sinxdx = dt,

РАЗДЕЛ 1.6. Геометрический смысл определенного интеграла.

Площадь криволинейной трапеции:

Известно, что определенный интеграл на отрезке представляет собой площадь криволинейной трапеции, ограниченной графиком функции f(x).

Площадь фигуры, ограниченной некоторыми линиями может быть найдена с помощью определенных интегралов, если известны уравнения этих линий.

Пусть на отрезке [а; b] задана непрерывная функция у = ƒ(х) ≥ 0. Найдем площадь этой трапеции.

Площадь фигуры, ограниченной осью 0x , двумя вертикальными прямыми x = a, x = b и графиком функции у = ƒ(х) (рисунок), определяется по формуле:

В этом заключается геометрический смысл определённого интеграла.

Пример 1: Вычислить площадь фигуры, ограниченной линиями: у=х 2 .+2, у=0, х= -2, х=1.

Решение: Выполним чертеж (обратите внимание, что уравнение у=0 задает ось Ох).

Ответ:S = 9 ед 2

Пример 2: Вычислить площадь фигуры, ограниченной линиями: у= - е х, х=1 и координатными осями.

Решение: Выполним чертеж.
Если криволинейная трапеция полностью расположена под осью Ох , то её площадь можно найти по формуле:

В данном случае:

Внимание! Если Вам предложено найти площадь фигуры с помощью определенного интеграла, то площадь всегда положительна! Именно поэтому в только что рассмотренной формуле фигурирует минус.

РАЗДЕЛ 1.7 . Применение определенного интеграла

п.1 Вычисление объема тела вращения

Если криволинейная трапеция прилежит к оси Оx, а прямые у=a, у=b и график функции у= F(x) (Рис.1), тогда объем тела вращения определяется по формуле, содержащей интеграл.

Объем тела вращения равен:

Пример:

Найти объём тела, ограниченного поверхностью вращения линии вокруг оси Ох при 0≤ х ≤4.

Решение: V

ед 3 . Ответ:ед 3 .

РАЗДЕЛ 3.1. Обыкновенные дифференциальные уравнения

п.1 Понятие о дифференциальном уравнении

Определение. Дифференциальным уравнением называется уравнение, содержащее функцию от совокупности переменных и их производных.

Общий вид такого уравнения =0, где F- известная функция своих аргументов, заданная в фиксированной области; х - независимая переменная(переменная, по которой дифференцируется);у - зависимая переменная (та, от которой берутся производные и та, которую надо определить); - производная зависимой переменной у по независимой переменной х.

п.2 Основные понятия дифференциального уравнения

Порядком дифференциального уравнения называется порядок старшей производной, входящей в него.

Например:

Уравнение второго порядка, - уравнение первого порядка.

Всякая функция, связывающая переменные и обращающая дифференциальное уравнение в верное равенство, называется решением дифференциального уравнения.

Общим решением дифференциального уравнения первого порядка называется функция от и произвольной постоянной С, обращающая это уравнение в тождество по .

Общее решение, записанное в неявном виде =0, называется общим интегралом.

Частным решением уравнения =0 называется решение, полученное из общего решения при фиксированном значении - фиксированное число.

Задача нахождения частного решения дифференциального уравнения n-го порядка (n= 1,2,3,…), удовлетворяющего начальным условиям вида

называется задачей Коши.

п.3 Дифференциальные уравнения первого порядка с разделяющимися переменными

Дифференциальное уравнение первого порядка называется уравнением с разделяющимися переменными, если его можно представить в виде можно переписать в виде . Если . Интегрируем: .

Чтобы решить уравнение такого вида надо:

1. Разделить переменные;

2. Интегрируя уравнение с разделенными переменными, найти общее решение данного уравнения;

3. Найти частное решение, удовлетворяющее начальным условиям (если они заданы).

Пример 1. Решить уравнение . Найти частное решение, удовлетворяющее условию y=4 при x=-2.

Решение: Это уравнение с разделенными переменными. Интегрируя, находим общее решение уравнения: . Для получения более простого по форме общего решения постоянное слагаемое в правой части представим в виде C/2. Имеем или - общее решение. Подставив в общее решение значения y=4 и x=-2, получим 16=4+С, откуда С=12.

Итак, частное решение уравнения, удовлетворяющее данному условию, имеет вид

Пример 2. Найдите частное решение уравнения, еслипри.

Решение: , , , , , общее решение.

Подставляем значения х и у в частное решение: , , частное решение.

Пример 3. Найдите общее решение уравнения. Решение: , , , - общее решение.

п.4 Дифференциальные уравнения порядка выше первого

Уравнение вида или решается двукратным интегрированием: , , откуда . Проинтегрировав эту функцию, получим новую функцию от f(x), которую обозначим через F(x). Таким образом, ; . Интегрируем еще раз: или у=Ф(х) . Получили общее решение уравнения, содержащее две произвольные постоянные и .

Пример 1. Решить уравнение .

Решение: , , ,

Пример 2. Решить уравнение . Решение: , , .

РАЗДЕЛ 3.2. Числовой ряд, его члены

Определение 1. Числовым рядом называется выражение вида ++…++…, (1)

где , , …, , …- числа, принадлежащие некоторой определенной числовой системе.

Так, можно говорить о действительных рядах, для которых R, о комплексных рядах, для которых C, i = 1, 2, …, n, … = =.

Раздел 3.3. Основы теории вероятностей и математической статистики

Для вычисления данного интеграла мы должны, если это возможно, пользуясь теми или другими способами, привести его к табличному интегралу и таким образом найти искомый результат. В нашем курсе мы рассмотрим лишь некоторые, наиболее часто встречающиеся приемы интегрирования и укажем их применение к простейшим примерам.

Наиболее важными методами интегрирования являются:
1) метод непосредственного интегрирования (метод разложения),
2) метод подстановки (метод введения новой переменной),
3) метод интегрирования по частям.

I. Метод непосредственного интегрирования

Задача нахождения неопределенных интегралов от многих функций решается методом сведения их к одному из табличных интегралов.

∫(1-√x) 2 dx=∫(1-2√x+x)dx=∫dx-∫2√xdx+∫xdx=∫dx-2∫x dx+∫xdx=

Пример 3. ∫sin 2 xdx

Так как sin 2 x=(1-cos2x), то
∫sin 2 xdx=(1-cos2x)dx=∫dx-∫cos2xd(2x)=x-sin2x+C

Пример 4. ∫sinxcos3xdx

Так как sinxcos3x=(sin4x-sin2x), то имеем
∫sinxcos3xdx=∫(sin4x-sin2x)dx=∫sin4xd(4x)-∫sin2xd(2x)=-cos4x+cos2x+C

Пример 5. Найти неопределенный интеграл: ∫cos(7x-3)dx

∫cos(7x-3)=∫cos(7x-3)d(7x-3)=sin(7x-3)+C

Пример 6.

II. Метод подстановки (интегрирование заменой переменной)

Если функция x=φ(t) имеет непрерывную производную, то в данном неопределенном интеграле ∫f(x)dx всегда можно перейти к новой переменной t по формуле

∫f(x)dx=∫f(φ(t))φ"(t)dt

Затем найти интеграл из правой части и вернуться к исходной переменной. При этом, интеграл стоящий в правой части данного равенства может оказаться проще интеграла, стоящего в левой части этого равенства, или даже табличным. Такой способ нахождения интеграла называется методом замены переменной.

Пример 7. ∫x√x-5dx

Чтобы избавиться от корня, полагаем √x-5=t. Отсюда x=t 2 +5 и, следовательно, dx=2tdt. Производя подстановку, последовательно имеем:

∫x√x-5dx=∫(t 2 +5) 2tdt=∫(2t 4 +10t 2)dt=2∫t 4 dt+10∫t 2 dt=

Пример 8.

Так как , то имеем

Пример 9.

Пример 10. ∫e -x 3 x 2 dx

Воспользуемся подстановкой -x 3 =t. Тогда имеем -3x 2 dx=dt и ∫e -x 3 x 2 dx=∫e t (-1/3)dt=-1/3e t +C=-1/3e -x 3 +C

Пример 11.

Применим подстановку 1+sinx=t , тогда cosxdx=dt и

III. Метод интегрирования по частям

Метод интегрирование по частям основан на следующей формуле:

∫udv=uv-∫vdu

где u(x),v(x) –непрерывно дифференцируемые функции. Формула называется формулой интегрирования по частям. Данная формула показывает, что интеграл ∫udv приводит к интегралу ∫vdu, который может оказаться более простым, чем исходный, или даже табличным.

Пример 12. Найти неопределенный интеграл ∫xe -2x dx

Интегральное исчисление.

Первообразная функция.

Определение: Функция F(x) называется первообразной функцией функции f(x) на отрезке , если в любой точке этого отрезка верно равенство:

Надо отметить, что первообразных для одной и той же функции может быть бесконечно много. Они будут отличаться друг от друга на некоторое постоянное число.

F 1 (x) = F 2 (x) + C.

Неопределенный интеграл.

Определение: Неопределенным интегралом функции f(x) называется совокупность первообразных функций, которые определены соотношением:

Записывают:

Условием существования неопределенного интеграла на некотором отрезке является непрерывность функции на этом отрезке.

Свойства:

1.

2.

3.

4.

Пример:

Нахождение значения неопределенного интеграла связано главным образом с нахождением первообразной функции. Для некоторых функций это достаточно сложная задача. Ниже будут рассмотрены способы нахождения неопределенных интегралов для основных классов функций – рациональных, иррациональных, тригонометрических, показательных и др.

Для удобства значения неопределенных интегралов большинства элементарных функций собраны в специальные таблицы интегралов, которые бывают иногда весьма объемными. В них включены различные наиболее часто встречающиеся комбинации функций. Но большинство представленных в этих таблицах формул являются следствиями друг друга, поэтому ниже приведем таблицу основных интегралов, с помощью которой можно получить значения неопределенных интегралов различных функций.

Интеграл

Значение

Интеграл

Значение

lnsinx+ C

ln

Методы интегрирования.

Рассмотрим три основных метода интегрирования.

Непосредственное интегрирование.

Метод непосредственного интегрирования основан на предположении о возможном значении первообразной функции с дальнейшей проверкой этого значения дифференцированием. Вообще, заметим, что дифференцирование является мощным инструментом проверки результатов интегрирования.

Рассмотрим применение этого метода на примере:

Требуется найти значение интеграла . На основе известной формулы дифференцирования
можно сделать вывод, что искомый интеграл равен
, где С – некоторое постоянное число. Однако, с другой стороны
. Таким образом, окончательно можно сделать вывод:

Заметим, что в отличие от дифференцирования, где для нахождения производной использовались четкие приемы и методы, правила нахождения производной, наконец определение производной, для интегрирования такие методы недоступны. Если при нахождении производной мы пользовались, так сказать, конструктивными методами, которые, базируясь на определенных правилах, приводили к результату, то при нахождении первообразной приходится в основном опираться на знания таблиц производных и первообразных.

Что касается метода непосредственного интегрирования, то он применим только для некоторых весьма ограниченных классов функций. Функций, для которых можно с ходу найти первообразную очень мало. Поэтому в большинстве случаев применяются способы, описанные ниже.

Способ подстановки (замены переменных).

Теорема: Если требуется найти интеграл
, но сложно отыскать первообразную, то с помощью замены x = (t) и dx = (t)dt получается:

Доказательство : Продифференцируем предлагаемое равенство:

По рассмотренному выше свойству №2 неопределенного интеграла:

f (x ) dx = f [ (t )]  (t ) dt

что с учетом введенных обозначений и является исходным предположением. Теорема доказана.

Пример. Найти неопределенный интеграл
.

Сделаем замену t = sinx , dt = cosxdt .

Пример.

Замена
Получаем:

Ниже будут рассмотрены другие примеры применения метода подстановки для различных типов функций.

Интегрирование по частям.

Способ основан на известной формуле производной произведения:

(uv) = uv + vu

где u и v – некоторые функции от х.

В дифференциальной форме: d(uv) = udv + vdu

Проинтегрировав, получаем:
, а в соответствии с приведенными выше свойствами неопределенного интеграла:

или
;

Получили формулу интегрирования по частям, которая позволяет находить интегралы многих элементарных функций.

Пример.

Как видно, последовательное применение формулы интегрирования по частям позволяет постепенно упростить функцию и привести интеграл к табличному.

Пример.

Видно, что в результате повторного применения интегрирования по частям функцию не удалось упростить к табличному виду. Однако, последний полученный интеграл ничем не отличается от исходного. Поэтому перенесем его в левую часть равенства.

Таким образом, интеграл найден вообще без применения таблиц интегралов.

Прежде чем рассмотреть подробно методы интегрирования различных классов функций, приведем еще несколько примеров нахождения неопределенных интегралов приведением их к табличным.

Пример.

Пример.

Пример.

Пример.

Пример.

Пример.

Пример.

Пример.

Пример.

Пример.

Интегрирование элементарных дробей.

Определение: Элементарными называются дроби следующих четырех типов:

I.
III.

II.
IV.

m, n – натуральные числа (m  2, n  2) и b 2 – 4ac <0.

Первые два типа интегралов от элементарных дробей довольно просто приводятся к табличным подстановкой t = ax + b.

Рассмотрим метод интегрирования элементарных дробей вида III.

Интеграл дроби вида III может быть представлен в виде:

Здесь в общем виде показано приведение интеграла дроби вида III к двум табличным интегралам.

Рассмотрим применение указанной выше формулы на примерах.

Пример.

Вообще говоря, если у трехчлена ax 2 + bx + c выражение b 2 – 4ac >0, то дробь по определению не является элементарной, однако, тем не менее ее можно интегрировать указанным выше способом.

Пример .

Пример.

Рассмотрим теперь методы интегрирования простейших дробей IV типа.

Сначала рассмотрим частный случай при М = 0, N = 1.

Тогда интеграл вида
можно путем выделения в знаменателе полного квадрата представить в виде
. Сделаем следующее преобразование:

Второй интеграл, входящий в это равенство, будем брать по частям.

Обозначим:

Для исходного интеграла получаем:

Полученная формула называется рекуррентной. Если применить ее n-1 раз, то получится табличный интеграл
.

Вернемся теперь к интегралу от элементарной дроби вида IV в общем случае.

В полученном равенстве первый интеграл с помощью подстановки t = u 2 + s приводится к табличному , а ко второму интегралу применяется рассмотренная выше рекуррентная формула.

Несмотря на кажущуюся сложность интегрирования элементарной дроби вида IV, на практике его достаточно легко применять для дробей с небольшой степенью n , а универсальность и общность подхода делает возможным очень простую реализацию этого метода на ЭВМ.

Пример :

Интегрирование рациональных функций.

Интегрирование рациональных дробей.

Для того, чтобы проинтегрировать рациональную дробь необходимо разложить ее на элементарные дроби.

Теорема: Если
- правильная рациональная дробь, знаменатель P(x) которой представлен в виде произведения линейных и квадратичных множителей (отметим, что любой многочлен с действительными коэффициентами может быть представлен в таком виде: P (x ) = (x - a ) …(x - b ) (x 2 + px + q ) …(x 2 + rx + s ) ), то эта дробь может быть разложена на элементарные по следующей схеме:

где A i , B i , M i , N i , R i , S i – некоторые постоянные величины.

При интегрировании рациональных дробей прибегают к разложению исходной дроби на элементарные. Для нахождения величин A i , B i , M i , N i , R i , S i применяют так называемый метод неопределенных коэффициентов , суть которого состоит в том, что для того, чтобы два многочлена были тождественно равны, необходимо и достаточно, чтобы были равны коэффициенты при одинаковых степенях х.

Применение этого метода рассмотрим на конкретном примере.

Пример.

Приводя к общему знаменателю и приравнивая соответствующие числители, получаем:




Пример.

Т.к. дробь неправильная, то предварительно следует выделить у нее целую часть:

6x 5 – 8x 4 – 25x 3 + 20x 2 – 76x – 7 3x 3 – 4x 2 – 17x + 6

6x 5 – 8x 4 – 34x 3 + 12x 2 2x 2 + 3

9x 3 + 8x 2 – 76x - 7

9x 3 – 12x 2 – 51x +18

20x 2 – 25x – 25

Разложим знаменатель полученной дроби на множители. Видно, что при х = 3 знаменатель дроби превращается в ноль. Тогда:

3x 3 – 4x 2 – 17x + 6 x - 3

3x 3 – 9x 2 3x 2 + 5x - 2

Таким образом 3x 3 – 4x 2 – 17x + 6 = (x – 3)(3x 2 + 5x – 2) = (x – 3)(x + 2)(3x – 1). Тогда:

Для того, чтобы избежать при нахождении неопределенных коэффициентов раскрытия скобок, группировки и решения системы уравнений (которая в некоторых случаях может оказаться достаточно большой) применяют так называемый метод произвольных значений . Суть метода состоит в том, что в полученное выше выражение подставляются поочередно несколько (по числу неопределенных коэффициентов) произвольных значений х. Для упрощения вычислений принято в качестве произвольных значений принимать точки, при которых знаменатель дроби равен нулю, т.е. в нашем случае – 3, -2, 1/3. Получаем:

Окончательно получаем:

=

Пример.

Найдем неопределенные коэффициенты:



Тогда значение заданного интеграла:

Интегрирование некоторых тригонометрических

функций.

Интегралов от тригонометрических функций может быть бесконечно много. Большинство из этих интегралов вообще нельзя вычислить аналитически, поэтому рассмотрим некоторые главнейшие типы функций, которые могут быть проинтегрированы всегда.

Интеграл вида
.

Здесь R – обозначение некоторой рациональной функции от переменных sinx и cosx.

Интегралы этого вида вычисляются с помощью подстановки
. Эта подстановка позволяет преобразовать тригонометрическую функцию в рациональную.

,

Тогда

Таким образом:

Описанное выше преобразование называется универсальной тригонометрической подстановкой.

Пример.

Несомненным достоинством этой подстановки является то, что с ее помощью всегда можно преобразовать тригонометрическую функцию в рациональную и вычислить соответствующий интеграл. К недостаткам можно отнести то, что при преобразовании может получиться достаточно сложная рациональная функция, интегрирование которой займет много времени и сил.

Однако при невозможности применить более рациональную замену переменной этот метод является единственно результативным.

Пример.

Интеграл вида
если

функция R cosx .

Несмотря на возможность вычисления такого интеграла с помощью универсальной тригонометрической подстановки, рациональнее применить подстановку t = sinx .

Функция
может содержать cosx только в четных степенях, а, следовательно, может быть преобразована в рациональную функцию относительно sinx.

Пример.

Вообще говоря, для применения этого метода необходима только нечетность функции относительно косинуса, а степень синуса, входящего в функцию может быть любой, как целой, так и дробной.

Интеграл вида
если

функция R является нечетной относительно sinx .

По аналогии с рассмотренным выше случаем делается подстановка t = cosx .

Пример.

Интеграл вида

функция R четная относительно sinx и cosx .

Для преобразования функции R в рациональную используется подстановка

t = tgx.

Пример.

Интеграл произведения синусов и косинусов

различных аргументов.

В зависимости от типа произведения применятся одна из трех формул:

Пример.

Пример.

Иногда при интегрировании тригонометрических функций удобно использовать общеизвестные тригонометрические формулы для понижения порядка функций.

Пример.

Пример.

Иногда применяются некоторые нестандартные приемы.

Пример.

Интегрирование некоторых иррациональных функций.

Далеко не каждая иррациональная функция может иметь интеграл, выраженный элементарными функциями. Для нахождения интеграла от иррациональной функции следует применить подстановку, которая позволит преобразовать функцию в рациональную, интеграл от которой может быть найден как известно всегда.

Рассмотрим некоторые приемы для интегрирования различных типов иррациональных функций.

Интеграл вида
где
n - натуральное число.

С помощью подстановки
функция рационализируется.

Пример.

Если в состав иррациональной функции входят корни различных степеней, то в качестве новой переменной рационально взять корень степени, равной наименьшему общему кратному степеней корней, входящих в выражение.

Проиллюстрируем это на примере.

Пример.

Интегрирование биноминальных дифференциалов.