Площадь боковой поверхности разных пирамид. Как найти площадь боковой поверхности пирамиды: формулы, пример задачи Как найти площадь боковой

Введите количество сторон, длину стороны и апофему:

Определение пирамиды

Пирамида - это многогранник, в основании которого лежит многоугольник, а грани его являются треугольниками.

Онлайн-калькулятор

Стоит остановиться на определении некоторых составляющих пирамиды.

У нее, как и у других многогранников, есть ребра . Они сходятся к одной точке, которая называется вершиной пирамиды. В ее основании может лежать произвольный многоугольник. Гранью называется геометрическая фигура, образованная одной из сторон основания и двумя ближайшими ребрами. В нашем случае это треугольник. Высотой пирамиды называется расстояние от плоскости, в которой лежит ее основание, до вершины многогранника. Для правильной пирамиды существует еще понятие апофемы - это перпендикуляр, опущенный из вершины пирамиды к её основанию.

Виды пирамид

Существуют 3 вида пирамид:

  1. Прямоугольная - та, у которой какое-либо ребро образует прямой угол с основанием.
  2. Правильная - у нее основание – правильная геометрическая фигура, а вершина самого многоугольника является проекцией центра основания.
  3. Тетраэдр - пирамида, составленная из треугольников. Причем каждый из них может быть принят за основание.

Формула площади поверхности пирамиды

Для нахождения полной площади поверхности пирамиды нужно сложить площадь боковой поверхности и площадь основания.

Самой простой является случай правильной пирамиды, поэтому нею мы и займемся. Вычислим полную площадь поверхности такой пирамиды. Площадь боковой поверхности равна:

S бок = 1 2 ⋅ l ⋅ p S_{\text{бок}}=\frac{1}{2}\cdot l\cdot p S бок = 2 1 ​ ⋅ l ⋅ p

L l l - апофема пирамиды;
p p p - периметр основания пирамиды.

Полная площадь поверхности пирамиды:

S = S бок + S осн S=S_{\text{бок}}+S_{\text{осн}} S = S бок + S осн

S бок S_{\text{бок}} S бок - площадь боковой поверхности пирамиды;
S осн S_{\text{осн}} S осн - площадь основания пирамиды.

Пример решения задачи.

Пример

Найти полную площадь треугольной пирамиды, если её апофема равна 8 (см.), а в основании лежит равносторонний треугольник со стороной 3 (см.)

Решение

L = 8 l=8 l = 8
a = 3 a=3 a = 3

Найдем периметр основания. Так как в основании лежит равносторонний треугольник со стороной a a a , то его периметр p p p (сумма всех его сторон):

P = a + a + a = 3 ⋅ a = 3 ⋅ 3 = 9 p=a+a+a=3\cdot a=3\cdot 3=9 p = a + a + a = 3 ⋅ a = 3 ⋅ 3 = 9

Тогда боковая площадь пирамиды:

S бок = 1 2 ⋅ l ⋅ p = 1 2 ⋅ 8 ⋅ 9 = 36 S_{\text{бок}}=\frac{1}{2}\cdot l\cdot p=\frac{1}{2}\cdot 8\cdot 9=36 S бок = 2 1 ​ ⋅ l ⋅ p = 2 1 ​ ⋅ 8 ⋅ 9 = 3 6 (см. кв.)

Теперь найдем площадь основания пирамиды, то есть площадь треугольника. В нашем случае треугольник равносторонний и его площадь можно вычислить по формуле:

S осн = 3 ⋅ a 2 4 S_{\text{осн}}=\frac{\sqrt{3}\cdot a^2}{4} S осн = 4 3 ​ ⋅ a 2

A a a - сторона треугольника.

Получаем:

S осн = 3 ⋅ a 2 4 = 3 ⋅ 3 2 4 ≈ 3.9 S_{\text{осн}}=\frac{\sqrt{3}\cdot a^2}{4}=\frac{\sqrt{3}\cdot 3^2}{4}\approx3.9 S осн = 4 3 ​ ⋅ a 2 = 4 3 ​ ⋅ 3 2 3 . 9 (см. кв.)

Полная площадь:

S = S бок + S осн ≈ 36 + 3.9 = 39.9 S=S_{\text{бок}}+S_{\text{осн}}\approx36+3.9=39.9 S = S бок + S осн 3 6 + 3 . 9 = 3 9 . 9 (см. кв.)

Ответ: 39.9 см. кв.

Еще один пример, немного сложнее.

Пример

Основанием пирамиды является квадрат с площадью 36 (см. кв.). Апофема многогранника в 3 раза больше стороны основания a a a . Найти полную площадь поверхности данной фигуры.

Решение

S квад = 36 S_{\text{квад}}=36 S квад = 3 6
l = 3 ⋅ a l=3\cdot a l = 3 ⋅ a

Найдем сторону основания, то есть сторону квадрата. Его площадь и длина стороны связанны:

S квад = a 2 S_{\text{квад}}=a^2 S квад = a 2
36 = a 2 36=a^2 3 6 = a 2
a = 6 a=6 a = 6

Найдем периметр основания пирамиды (то есть, периметр квадрата):

P = a + a + a + a = 4 ⋅ a = 4 ⋅ 6 = 24 p=a+a+a+a=4\cdot a=4\cdot 6=24 p = a + a + a + a = 4 ⋅ a = 4 ⋅ 6 = 2 4

Найдем длину апофемы:

L = 3 ⋅ a = 3 ⋅ 6 = 18 l=3\cdot a=3\cdot 6=18 l = 3 ⋅ a = 3 ⋅ 6 = 1 8

В нашем случае:

S квад = S осн S_{\text{квад}}=S_{\text{осн}} S квад = S осн

Осталось найти только площадь боковой поверхности. По формуле:

S бок = 1 2 ⋅ l ⋅ p = 1 2 ⋅ 18 ⋅ 24 = 216 S_{\text{бок}}=\frac{1}{2}\cdot l\cdot p=\frac{1}{2}\cdot 18\cdot 24=216 S бок = 2 1 ​ ⋅ l ⋅ p = 2 1 ​ ⋅ 1 8 2 4 = 2 1 6 (см. кв.)

Полная площадь:

S = S бок + S осн = 216 + 36 = 252 S=S_{\text{бок}}+S_{\text{осн}}=216+36=252

Ответ: 252 см. кв.

В правильной треугольной пирамиде SABC R - середина ребра АВ , S - вершина.
Известно, что SR = 6 , а площадь боковой поверхности равна 36 .
Найдите длину отрезка BC .

Сделаем чертёж. В правильной пирамиде боковые грани - равнобедренные треугольники.

Отрезок SR - медиана, опущенная на основание, а значит, и высота боковой грани.

Площадь боковой поверхности правильной треугольной пирамиды равна сумме площадей
трёх равных боковых граней S бок. = 3 · S ABS . Отсюда S ABS = 36: 3 = 12 - площадь грани.

Площадь треугольника равна половине произведения его основания на высоту
S ABS = 0,5 · AB · SR . Зная площадь и высоту, найдём сторону основания АВ = ВС .
12 = 0,5 · АВ · 6
12 = 3 · АВ
АВ = 4

Ответ : 4

Можно подойти к задаче и с другого конца. Пусть сторона основания АВ = ВС = а .
Тогда площадь грани S ABS = 0,5 · AB · SR = 0,5 · а · 6 = 3а .

Площадь каждой из трёх граней равна , площадь трёх граней равна .
По условию задачи площадь боковой поверхности пирамиды равна 36.
S бок. = 9а = 36 .
Отсюда а = 4 .


В этом уроке:
  • Задача 1. Найти площадь полной поверхности пирамиды
  • Задача 2. Найти площадь боковой поверхности правильной треугольной пирамиды
См. также материалы по теме:
.

Примечание . Если Вам необходимо решить задачу по геометрии, которой здесь нет - пишите об этом в форуме. В задачах вместо символа "квадратный корень" применяется функция sqrt(), в которой sqrt - символ квадратного корня, а в скобках указано подкоренное выражение. Для простых подкоренных выражений может использоваться знак "√" .

Задача 1 . Найти площадь полной поверхности правильной пирамиды

Высота основания правильной треугольной пирамиды равна 3 см. а угол между боковой гранью и основанием пирамиды равен 45 градусов.
Найти площадь полной поверхности пирамиды

Решение .

В основании правильной треугольной пирамиды лежит равносторонний треугольник.
Поэтому для решения задачи воспользуемся свойствами правильного треугольника:

Нам известна высота треугольника, откуда можно найти его площадь.
h = √3/2 a
a = h / (√3/2)
a = 3 / (√3/2)
a = 6 / √3

Откуда площадь основания будет равна:
S = √3/4 a 2
S = √3/4 (6 / √3) 2
S = 3√3

Для того, чтобы найти площадь боковой грани, вычислим высоту KM. Угол OKM по условию задачи равен 45 градусам.
Таким образом:
OK / MK = cos 45
Воспользуемся таблицей значений тригонометрических функций и подставим известные значения.

OK / MK = √2/2

Учтем, что OК равен радиусу вписанной окружности. Тогда
OK = √3/6 a
OK = √3/6 * 6/√3 = 1

Тогда
OK / MK = √2/2
1 / MK = √2/2
MK = 2/√2

Площадь боковой грани тогда равна половине произведения высоты на основание треугольника.
Sбок = 1/2 (6 / √3) (2/√2) = 6/√6

Таким образом, площадь полной поверхности пирамиды будет равна
S = 3√3 + 3 * 6/√6
S = 3√3 + 18/√6

Ответ : 3√3 + 18/√6

Задача 2 . Найти площадь боковой поверхности правильной пирамиды

В правильной треугольной пирамиде высота равна 10 см, а сторона основания 16 см. Найти площадь боковой поверхности .

Решение .

Поскольку основанием правильной треугольной пирамиды является равносторонний треугольник, то AO является радиусом описанной вокруг основания окружности.
(Это следует из )

Радиус окружности, описанной вокруг равностороннего треугольника найдем из его свойств

Откуда длина ребер правильной треугольной пирамиды будет равна:
AM 2 = MO 2 + AO 2
высота пирамиды известна по условию (10 см), AO = 16√3/3
AM 2 = 100 + 256/3
AM = √(556/3)

Каждая из сторон пирамиды представляет собой равнобедренный треугольник. Площадь равнобедренного треугольника найдем из первой формулы, представленной ниже

S = 1/2 * 16 sqrt((√(556/3) + 8) (√(556/3) - 8))
S = 8 sqrt((556/3) - 64)
S = 8 sqrt(364/3)
S = 16 sqrt(91/3)

Поскольку все три грани у правильной пирамиды равны, то площадь боковой поверхности будет равна
3S = 48 √(91/3)

Ответ: 48 √(91/3)

Задача 3. Найти площадь полной поверхности правильной пирамиды

Сторона правильной треугольной пирамиды равна 3 см а угол между боковой гранью и основанием пирамиды равен 45 градусов. Найдите площадь полной поверхности пирамиды .

Решение .
Поскольку пирамида правильная, в ее основании лежит равносторонний треугольник. Поэтому площадь основания равна


So = 9 * √3/4

Для того, чтобы найти площадь боковой грани, вычислим высоту KM. Угол OKM по условию задачи равен 45 градусам.
Таким образом:
OK / MK = cos 45
Воспользуемся

Цилиндр представляет собой геометрическое тело, ограниченное двумя параллельными плоскостями и цилиндрической поверхностью. В статье поговорим о том, как найти площадь цилиндра и, применив формулу, решим для примера несколько задач.

У цилиндра есть три поверхности: вершина, основание, и боковая поверхность.

Вершина и основание цилиндра являются окружностями, их легко определить.

Известно, что площадь окружности равна πr 2 . Поэтому, формула площади двух окружностей (вершины и основания цилиндра) будет иметь вид πr 2 + πr 2 = 2πr 2 .

Третья, боковая поверхность цилиндра, является изогнутой стенкой цилиндра. Для того чтобы лучше представить эту поверхность попробуем преобразовать её, чтобы получить узнаваемую форму. Представьте себе, что цилиндр, это обычная консервная банка, у которой нет верхней крышки и дна. Сделаем вертикальный надрез на боковой стенке от вершины до основания банки (Шаг 1 на рисунке) и попробуем максимально раскрыть (выпрямить) полученную фигуру (Шаг 2).

После полного раскрытия полученной банки мы увидим уже знакомую фигуру (Шаг 3), это прямоугольник. Площадь прямоугольника вычислить легко. Но перед этим вернемся на мгновение к первоначальному цилиндру. Вершина исходного цилиндра является окружностью, а мы знаем, что длина окружности вычисляется по формуле: L = 2πr. На рисунке она отмечена красным цветом.

Когда боковая стенка цилиндра полностью раскрыта, мы видим, что длина окружности становится длиной полученного прямоугольника. Сторонами этого прямоугольника будут длина окружности(L = 2πr) и высота цилиндра(h). Площадь прямоугольника равна произведению его сторон – S = длина х ширина = L x h = 2πr x h = 2πrh. В результате мы получили формулу для расчета площади боковой поверхности цилиндра.

Формула площади боковой поверхности цилиндра
S бок. = 2πrh

Площадь полной поверхности цилиндра

Наконец, если мы сложим площадь всех трёх поверхностей, мы получим формулу площади полной поверхности цилиндра. Площади поверхности цилиндра равна площадь вершины цилиндра + площадь основания цилиндра + площадь боковой поверхности цилиндра или S = πr 2 + πr 2 + 2πrh = 2πr 2 + 2πrh. Иногда это выражение записывается идентичной формулой 2πr (r + h).

Формула площади полной поверхности цилиндра
S = 2πr 2 + 2πrh = 2πr(r + h)
r – радиус цилиндра, h – высота цилиндра

Примеры расчета площади поверхности цилиндра

Для понимания приведенных формул попробуем посчитать площадь поверхности цилиндра на примерах.

1. Радиус ос­но­ва­ния цилиндра равен 2, высота равна 3. Определите площадь боковой поверхности цилиндра.

Площадь полной поверхности рассчитывается по формуле: S бок. = 2πrh

S бок. = 2 * 3,14 * 2 * 34.6 . Всего получено оценок: 990.


Определение. Боковая грань - это треугольник, у которого один угол лежит в вершине пирамиды, а противоположная ему сторона совпадает со стороной основания (многоугольника).

Определение. Боковые ребра - это общие стороны боковых граней. У пирамиды столько ребер сколько углов у многоугольника.

Определение. Высота пирамиды - это перпендикуляр, опущенный из вершины на основание пирамиды.

Определение. Апофема - это перпендикуляр боковой грани пирамиды, опущенный из вершины пирамиды к стороне основания.

Определение. Диагональное сечение - это сечение пирамиды плоскостью, проходящей через вершину пирамиды и диагональ основания.

Определение. Правильная пирамида - это пирамида, в которой основой является правильный многоугольник, а высота опускается в центр основания.


Объём и площадь поверхности пирамиды

Формула. Объём пирамиды через площадь основы и высоту:


Свойства пирамиды

Если все боковые ребра равны, то вокруг основания пирамиды можно описать окружность, а центр основания совпадает с центром окружности. Также перпендикуляр, опущенный из вершины, проходит через центр основания (круга).

Если все боковые ребра равны, то они наклонены к плоскости основания под одинаковыми углами.

Боковые ребра равны тогда, когда они образуют с плоскостью основания равные углы или если вокруг основания пирамиды можно описать окружность.

Если боковые грани наклонены к плоскости основания под одним углом, то в основание пирамиды можно вписать окружность, а вершина пирамиды проектируется в ее центр.

Если боковые грани наклонены к плоскости основания под одним углом, то апофемы боковых граней равны.


Свойства правильной пирамиды

1. Вершина пирамиды равноудалена от всех углов основания.

2. Все боковые ребра равны.

3. Все боковые ребра наклонены под одинаковыми углами к основанию.

4. Апофемы всех боковых граней равны.

5. Площади всех боковых граней равны.

6. Все грани имеют одинаковые двугранные (плоские) углы.

7. Вокруг пирамиды можно описать сферу. Центром описанной сферы будет точка пересечения перпендикуляров, которые проходят через середину ребер.

8. В пирамиду можно вписать сферу. Центром вписанной сферы будет точка пересечения биссектрис, исходящие из угла между ребром и основанием.

9. Если центр вписанной сферы совпадает с центром описанной сферы, то сумма плоских углов при вершине равна π или наоборот, один угол равен π/n , где n - это количество углов в основании пирамиды.


Связь пирамиды со сферой

Вокруг пирамиды можно описать сферу тогда, когда в основании пирамиды лежит многогранник вокруг которого можно описать окружность (необходимое и достаточное условие). Центром сферы будет точка пересечения плоскостей, проходящих перпендикулярно через середины боковых ребер пирамиды.

Вокруг любой треугольной или правильной пирамиды всегда можно описать сферу.

В пирамиду можно вписать сферу, если биссекторные плоскости внутренних двугранных углов пирамиды пересекаются в одной точке (необходимое и достаточное условие). Эта точка будет центром сферы.


Связь пирамиды с конусом

Конус называется вписанным в пирамиду, если их вершины совпадают, а основание конуса вписано в основание пирамиды.

Конус можно вписать в пирамиду, если апофемы пирамиды равны между собой.

Конус называется описанным вокруг пирамиды, если их вершины совпадают, а основание конуса описана вокруг основания пирамиды.

Конус можно описать вокруг пирамиды если, все боковые ребра пирамиды равны между собой.


Связь пирамиды с цилиндром

Пирамида называется вписанной в цилиндр, если вершина пирамиды лежит на одной основе цилиндра, а основание пирамиды вписано в другую основу цилиндра.

Цилиндр можно описать вокруг пирамиды если вокруг основания пирамиды можно описать окружность.


Определение. Усеченная пирамида (пирамидальная призма) - это многогранник, который находится между основанием пирамиды и плоскостью сечения, параллельной основанию. Таким образом пирамида имеет большую основу и меньшую основу, которая подобна большей. Боковые грани представляют собой трапеции.

Определение. Треугольная пирамида (четырехгранник) - это пирамида в которой три грани и основание являются произвольными треугольниками.

В четырехгранник четыре грани и четыре вершины и шесть ребер, где любые два ребра не имеют общих вершин но не соприкасаются.

Каждая вершина состоит из трех граней и ребер, которые образуют трехгранный угол .

Отрезок, соединяющий вершину четырехгранника с центром противоположной грани называется медианой четырехгранника (GM).

Бимедианой называется отрезок, соединяющий середины противоположных ребер, которые не соприкасаются (KL).

Все бимедианы и медианы четырехгранника пересекаются в одной точке (S). При этом бимедианы делятся пополам, а медианы в отношении 3:1 начиная с вершины.

Определение. Наклонная пирамида - это пирамида в которой одно из ребер образует тупой угол (β) с основанием.

Определение. Прямоугольная пирамида - это пирамида в которой одна из боковых граней перпендикулярна к основанию.

Определение. Остроугольная пирамида - это пирамида в которой апофема больше половины длины стороны основания.

Определение. Тупоугольная пирамида - это пирамида в которой апофема меньше половины длины стороны основания.

Определение. Правильный тетраэдр - четырехгранник у которого все четыре грани - равносторонние треугольники. Он является одним из пяти правильных многоугольников. В правильного тетраэдра все двугранные углы (между гранями) и трехгранные углы (при вершине) равны.

Определение. Прямоугольный тетраэдр называется четырехгранник у которого прямой угол между тремя ребрами при вершине (ребра перпендикулярны). Три грани образуют прямоугольный трехгранный угол и грани являются прямоугольными треугольниками, а основа произвольным треугольником. Апофема любой грани равна половине стороны основы, на которую падает апофема.

Определение. Равногранный тетраэдр называется четырехгранник у которого боковые грани равны между собой, а основание - правильный треугольник. У такого тетраэдра грани это равнобедренные треугольники.

Определение. Ортоцентричный тетраэдр называется четырехгранник у которого все высоты (перпендикуляры), что опущены с вершины до противоположной грани, пересекаются в одной точке.

Определение. Звездная пирамида называется многогранник у которого основой является звезда.

Определение. Бипирамида - многогранник, состоящий из двух различных пирамид (также могут быть срезаны пирамиды), имеющих общую основу, а вершины лежат по разные стороны от плоскости основания.