Электрооборудование судов. Судовые электрические станции Судовые электростанции источники электрической энергии параметры

Судовая электростанция является центральным пунктом электро-энергетической системы судна и предназначена для выработки, преобразования и первичного распределения электрической энергии.

В состав судовой электростанции входят источники и преобразователи электрической энергии и главный электрораспределительный щит с приборами управления, контроля и защиты. В судовых условиях при наличии сложных условий эксплуатации электрооборудования требуется повышенная надежность работы электростанции.

Судовые электростанции могут быть классифицированы но назначению, роду тока, типам первичных двигателей генераторных агрегатов, способу отбора мощности, способу управления.

По назначению различают основные, аварийные и специальные судовые электростанции.

Основная судовая электростанция предназначена для питания приемников электроэнергии на всех режимах работы судна. Электростанцию размещают в машинном отделении судна так, чтобы оси вращающихся источников электрической энергии были параллельны диаметральной плоскости судна, а устанавливают перпендикулярно ей.

Аварийная судовая электростанция обеспечивает минимальное число приемников электроэнергии, выбираемых согласно Правилам Речного Регистра, в случае исчезновения напряжения на главном электрораспределительном щите.

Электростанции специального назначения предназначены для питания гребных электрических установок на дизель-электроходах и привода черпакового устройства на земснарядах.

Ледоколы типа «Капитан Чечкин» имеют единую судовую электростанцию, обеспечивающую электроэнергией гребную установку и все судовые приемники.

По способу управления различают неавтоматизированные и автоматизированные судовые электростанции. Неавтоматизированные имеют ручное управление режимами работы, автоматизированные — автоматическое (автозапуск, установка режима, выключение и др.) с контролем за работой с пульта управления, установленного в ходовой рубке, или из центрального поста управления в машинном отделении.

Автоматизированные судовые дизель-генераторы по объему автоматизации должны соответствовать одной из трех степеней автоматизации.

При автоматизации по первой степени автоматически поддерживается частота вращения, температура охлаждающей жидкости и смазочного масла дизель-генераторов. Аварийно-предупредительная сигнализация и защита позволяют иметь условия эксплуатации, при которых дизель-генераторы могут работать без обслуживания и наблюдения не менее 4 ч.

Автоматизация по второй степени позволяет иметь в автоматическом режиме пуск, параллельную работу с другими дизель-генераторами, выключение из работы с продолжительностью эксплуатации без обслуживания не менее 24 ч.

Дизель-генераторы, автоматизированные по третьей степени , имеют заданное распределение активных и реактивных нагрузок при параллельной работе генераторов, а также заданное управление вспомогательными агрегатами, обеспечивающими полный объем автоматизации дизель-электрического агрегата со сроком необслуживаемой работы не менее 240 ч.

Вторая и третья степени автоматизации определяются наличием аварийной сигнализации и защиты при достижении предельных значений температуры и давления охлаждающей жидкости и смазочного масла дизеля, частоты вращения, обратного тока или обратной мощности генератора. Автоматическая остановка дизель-генератора (за исключением аварийной) выполняется после отключения нагрузки генератора; при параллельной работе снятие нагрузки осуществляется уменьшением подачи топлива до режима холостого хода.

По роду тока судовые электростанции разделяются на электростанции постоянного и переменного тока. До 50-х годов на судах применяли в основном постоянный ток. В последние годы в связи с ростом мощностей судовых электроэнергетических установок, а также с созданием надежного, экономичного и удобного в эксплуатации электрооборудования на переменном токе область применения постоянного тока ограничивается. Решающим фактором при выборе рода тока являются особенности приемников электрической энергии, главным образом электродвигателей.

Асинхронные короткозамкнутые двигатели переменного тока просты и надежны, не требуют постоянного обслуживания при эксплуатации, имеют меньшие массу, габаритные размеры и стоимость по сравнению с электродвигателями постоянного тока. Кроме того, источники переменного тока — с самовозбуждением и автоматическим регулированием напряжения при одинаковых (с генераторами постоянного тока) мощности и частоте вращения имеют меньшие габаритные размеры, удобнее в эксплуатации, более просты и надежны. Пусковая и коммутационная аппаратура электродвигателей и
генераторов переменного тока также проще, имеет меньшую стоимость и удобнее в эксплуатации.

При переменном токе трансформаторы несложным способом изменяют напряжение сети. Они позволяют отделить сеть освещения, где часто случаются повреждения и замыкания, от силовой сети. Судно с электростанцией на переменном токе может получать энергию от береговых сетей. имеют меньшую пожаро- и взрывоопасность, так как у них нет коллектора, где часто возникает искрение.

Вместе с тем переменный ток имеет недостатки: худшие регулировочные свойства у двигателей переменного тока, особенно с точки зрения плавности регулирования; большие пусковые токи короткозамкнутых асинхронных электродвигателей, мощность которых часто соизмерима с мощностью синхронных генераторов, что приводит к глубоким провалам напряжения сети.

Если на судне установлены механизмы, требующие плавного регулирования частоты вращения в широких пределах с большими моментами трогания, для их привода следует применять двигатели постоянного тока. Если же основными потребителями энергии являются электроприводы насосов и других механизмов, не требующих регулирования, то в качестве приводных двигателей целесообразно использовать асинхронные электродвигатели и ток судовых электростанций должен быть переменным. Питание отдельных приемников иного рода тока, чем у судовых электростанций, следует осуществлять через соответствующие преобразователи.

Таким образом, в настоящее время судовые электростанции на постоянном токе используют при напряжении 24 В на судах грузоподъемностью до 800 т, в том числе на скоростных судах на подводных крыльях, а также судах постройки до 60-х годов. Весь флот последующих лет постройки имеет электростанции при напряжении 220 или 380 В на переменном токе трехфазной системы.

Основными критериями при выборе напряжения судовой электростанции являются соблюдение требований техники безопасности и возможное ограничение массы кабельной сети путем уменьшения площади сечения , что достигается уменьшением тока нагрузки при данной мощности потребителя в результате повышения напряжения.
В соответствии с Правилами Речного Регистра на выводах судовых генераторов должны быть номинальные стандартные напряжения 27, 115, 230 В — при постоянном, 133, 230 В — при однофазном переменном токе и 230, 400 В при трехфазной системе переменного тока, причем номинальная стандартная частота переменного тока должна быть равна 50 Гц.

При небольших значениях мощности судовой электростанции и ограниченных размерах судна увеличение напряжения обычно не дает существенного снижения массы кабелей.

По типам первичных двигателей генераторных агрегатов судовые электростанции бывают: с двигателями внутреннего сгорания (ДВС), паровыми машинами, газовыми турбинами. При работе генераторов вследствие отбора мощности от главных двигателей судовой энергетической установки различают навешенные генераторы (небольшой мощности), установленные на двигатели, и валогенераторы (приводятся во вращение от главного валопровода).

Использование дизелей в качестве первичных двигателей судовых генераторов весьма целесообразно, так как они экономичны, компактны, автономны и требуют сравнительно несложной и небольшой по времени подготовки к пуску.

В настоящее время согласно государственному стандарту должны применяться дизели с частотой вращения 500, 750, 1000, 1500 об/мин. Высокооборотные дизель-генераторы легче малооборотных, занимают меньше места, дешевле и имеют более высокий к. п. д. Однако они обладают меньшим моторесурсом и очень шумны. Дизели допускают возможность работы с перегрузкой до 10 % номинальной мощности в течение 1 ч.

Судовые дизель-генераторы (ДГ) по способу соединения генераторов с первичными двигателями могут быть:

ДГР — дизель-генераторы рамные, у которых дизель и генератор конструктивно независимы, установлены на общей фундаментной раме и соединены между собой с помощью жесткой или эластичной муфты:

ДГФ — дизель-генераторы фланцевые, статор генератора которых крепится к остову дизеля с помощью фланца, а ротор может иметь один или два подшипника;

ДГМ — дизель-генераторы маховичные; ротор генератора в этом случае крепится непосредственно к коленчатому валу дизеля и является его маховиком.

На грузовых судах в составе электростанции могут быть валогенераторы , работающие вследствие отбора мощности от главного двигателя или гребного вала. Наиболее характерными режимами эксплуатации большинства типов грузовых судов являются режимы, при которых резерв мощности на гребном валу составляет 10—15 % номинальной мощности главного двигателя. В то же время опыт эксплуатации показывает, что мощность, потребляемая от электростанции в ходовом режиме работы судна, обычно не превышает 10 % мощности главного двигателя. Поэтому на грузовых судах имеется реальная возможность в ходовом режиме выключать из работы основные дизель-генераторы и включать генераторы с приводом от гребного вала. Валогенераторы в судовой электростанции экономят моторесурс дизель-генераторов, существенно повышают к. п. д. энергетической установки, уменьшают удельный расход топлива на киловатт-час, а также снижают уровень шума в машинном отделении. Сокращаются эксплуатационные расходы на обслуживание и ремонт дизель-генераторов.

Однако валогенераторы могут работать только на переднем ходу судна при диапазоне изменения частоты вращения главного двигателя в пределах 85 - 105 % номинального значения. Изменение напряжения на зажимах валогенератора допускается в таких же пределах, а частота тока должна быть равна 45—52,5 Гц. Валогенераторную установку в составе электростанции необходимо обеспечивать надежным резервированием за счет других источников электроэнергии (дизель-генератор, аккумуляторная батарея). При значительном снижении частоты вращения главного двигателя валогенератор отключается, и подается сигнал на автоматический запуск дизель-генератора. Система автозапуска должна выполнять пуск, разгон, возбуждение и включение на нагрузку за время, не превышающее 10 с с момента поступления сигнала на запуск. В период переключения нагрузки с валогенератора на дизель-генератор ответственные электроприемники обеспечиваются энергией от аккумуляторной батареи непосредственно или через преобразователь тока. Перерыв в питании ответственных приемников при автоматическом переключении валогенератора на аккумуляторную батарею, а также с батареи на дизель-генератор не должен превышать 3 с.

Не допускается наличие валогенератора в составе судовой электростанции на следующих типах судов: сухогрузных и наливных теплоходах смешанного «река—море» плавания; рейдовых и шлюзовых буксирах-толкачах, паромах; на судах любого назначения, где время использования валогенератора составляет менее 25 % ходового времени.

Наиболее целесообразна установка валогенераторов на грузовых транзитных судах (танкерах, толкачах, буксирах), так как электроэнергия, потребляемая на ходу этих судов, мала, а время использования валогенераторов составляет значительную часть ходового времени.

В качестве приводного устройства к валогенератору обычно используют клиноременную передачу. Зубчатые передачи распространения не получили из-за больших динамических моментов при пуске и реверсе главных дизелей, что приводит к поломке шестерен.

Положительные результаты показывает опыт использования муфты свободного хода, передающей вращающий момент только в одном на-правлении. Применение муфт свободного хода одновременно у валогенераторов и дизель-генераторов даст возможность переводить приемники на питание от валогенератора к стояночному дизель-генератору и обратно без перерыва.

В состав судовых электростанций, кроме дизель-генераторов и валогенераторов, входят трансформаторы, преобразователи тока, аккумуляторные батареи. Трансформаторы применяют главным образом для понижения напряжения до 36, 24, 12 В с целью обеспечения безопасности использования переносного освещения, электроинструмента и т. д. Трансформаторы обеспечивают разъединение электрических сетей на отдельные группы.

Судовая электростанция предназначена для снабжения электроэнергией всех судовых потребителей на всех режимах эксплуатации судна. Согласно нормативным требованиям потребители электроэнергии на судах объединяются в ряд групп, в том числе:

Электромеханизмы энергетической установки;

Электромеханизмы общесудовых систем и устройств;

Палубные механизмы;

Средства обеспечивающие обитаемость;

Средства управления судном;

Средства навигации и связи.

На судах преимущественно применяется переменный ток напряжения 400 В и частотой 50 Гц. К качеству генерируемого тока предъявляются жесткие требования, как по отклонению напряжения, так и частоты.

В качестве электрогенерирующих агрегатов используются агрегаты в составе первичных двигателей, как правило, такого же типа как и главный двигатель судна. К двигателям агрегатов предъявляются требования надежности, по массе и габариту, экономичности и маневренности. Особенно жесткие требования предъявляются к агрегатам, обеспечивающие их устойчивую параллельную работу.

Выбор электрогенераторов следует производить из числа типовых образцов, выпускаемых специализированными предприятиями. Раннее упоминалась возможность применения на дизельных судах утилизационных турбогенераторов, а также валогенераторов Анализ возможных способов привода валогенератора, в том числе с использованием силовой газовой турбины приводится в работе [ 2 ]. Следует иметь в виду, что при этом не исключается необходимость в автономных электрогенераторах, вводимых в работу на режимах частичных нагрузок СЭУ и на стоянке.

Согласно Правилам Российского морского регистра судоходства на судах должно быть предусмотрено не менее двух электрогенераторов, каждый из которых обладает мощностью способной полностью удовлетворить потребности судна в электроэнергии.

В отечественной практике установилась тенденция применения на транспортных судах электростанции в составе трех электрогенераторов, двух одновременно работающих и третий резервный.

Исходным требованием к судовой электростанции является мощность, обеспечивающая выполнение основных режимов эксплуатации судна

Для определения необходимой мощности на режимах существует ряд методик. Наиболее достоверный результат дает применение таблиц электрических загрузок. Таблица составляется по установленной форме для основных режимов эксплуатации судна. В таблице указывается номинальная мощность потребителей электроэнергии, их количество, значения эффективного,.и мощностного к.п. д.Применительно к режимам указывается количество работающих потребителей, их загрузка и значение к.п. д, .как эффективного, так и мощностного. Таблица завершается определением суммарного потребления электроэнергии на режимах и среднего значения мощностного к.п.д. потребителей.



Выбор состава электростанции производится исходя из значения максимальной мощности на режимах. Сопоставление значений среднего мощностного к.п.д. потребителей и мощностного к.п.д. электрогенератора необходимо для выбора электрогенератора по активной составляющей мощности или же по полной мощности, представляющей собой среднее квадратичное значение активной и реактивной мощностей потребителей

Форма таблиц нагрузок и зависимости к определению мощности электрогенераторов приведены в [ 2 ] . Подробное изложение вопроса проектирования судовой электростанции рассматривается в курсе “ Электрооборудование судов” .

Составление таблиц электрической нагрузки возможно если проектант располагает достаточной информацией при наличии близкого прототипа судна. В противном случае допустимо применение статистических методов. К их числу можно отнести рекомендации нормали РД31.03 41-90 “Технико-эксплуатационные требования оптимальной комплектации электростанций морских транспортных судов ММФ.1990”. Здесь рекомендуется определять мощность электростанции по формуле:

кВт - сумма средней статистической величины мощности электропотребителей и 3-х средних квадратичных отклонений величины мощности потребителей.

КВт добавочная мощность, определяемая особенностями судна.

Величины, входящие в последнюю формулу, даются в функции мощности главного двигателя и водоизмещения судна в.[ 2 ] и [ 8 ]

Ремонтом ежедневно занимаются тысячи людей во всем мире. При его выполнении каждый начинает задумываться о тех тонкостях, которые сопутствуют ремонту: в какой цветовой гамме выбрать обои, как подобрать шторы в цвет обоев, правильно расставить мебель для получения единого стиля помещения. Но о самом главном редко кто задумывается, а этим главным является замена электропроводки в квартире. Ведь если со старой проводкой что-то произойдет, то квартира потеряет всю свою привлекательность и станет совершенно не пригодной для жизни.

Как заменить проводку в квартире знает любой электрик, но это под силу любому обычному гражданину, однако при выполнении данного вида работ ему следует выбирать качественные материалы, чтобы получить безопасную электрическую сеть в помещении.

Первое действие, которое необходимо выполнить, спланировать будущую проводку . На данном этапе нужно определить, в каких именно местах будут проложены провода. Также на данном этапе можно вносить любые коррективы в существующую сеть, что позволит максимально комфортно в соответствии с потребностями хозяев расположить светильники и .

12.12.2019

Узкоотраслевые приборы трикотажной подотрасли и их техническое обслуживание

Для определения растяжимости чулочно-носочных изделий применяется прибор, схема которого показана на рис. 1.

В основе конструкции прибора лежит принцип с автоматическим уравновешиванием коромысла упругими силами испытываемого изделия, действующими с постоянной скоростью.

Весовое коромысло представляет собой равноплечий круглый стальной стержень 6, имеющий ось вращения 7. На его правый конец крепятся с помощью байонетного замка лапки или раздвижная форма следа 9, на которые одевается изделие. На левом плече шарнирно укреплена подвеска для грузов 4, а его конец заканчивается стрелкой 5, показывающей равновесное состояние коромысла. До начала испытаний изделия коромысло приводят в равновесие подвижной гирей 8.

Рис. 1. Схема прибора для измерения растяжимости чулочно-носочных изделий: 1 —направляющая, 2 — левая линейка, 3 — движок, 4 — подвеска для грузов; 5, 10 — стрелки, 6 — стержень, 7 — ось вращения, 8 — гиря, 9 — форма следа, 11— растягивающий рычаг,

12— каретка, 13 — ходовой винт, 14 — правая линейка; 15, 16 — винтовые шестерни, 17 — червячный редуктор, 18 — соединительная муфта, 19 — электродвигатель


Для перемещения каретки 12 с растягивающим рычагом 11 служит ходовой винт 13, на нижнем конце которого закреплена винтовая шестерня 15; через нее вращательное движение передается ходовому винту. Перемена направления вращения винта зависит от изменения вращения 19, который при помощи соединительной муфты 18 связан с червячным редуктором 17. На вал редуктора посажена винтовая шестерня 16, непосредственно сообщающая движение шестерне 15.

11.12.2019

В пневматических исполнительных механизмах перестановочное усилие создается за счет воздействия сжатым воздухом на мембрану, или поршень. Соответственно различают механизмы мембранные, поршневые и сильфонные. Они предназначены для установки и перемещения затвора регулирующего органа в соответствии с пневматическим командным сигналом. Полный рабочий ход выходного элемента механизмов осуществляется при изменении командного сигнала от 0,02 МПа (0,2 кг/см 2) до 0,1 МПа (1 кг/см 2). Предельное давление сжатого воздуха в рабочей полости — 0,25 МПа (2,5 кг/см 2).

У мембранных прямоходных механизмов шток совершает возвратно-поступательное движение. В зависимости от направления движения выходного элемента они подразделяются на механизмы прямого действия (при повышении давления мембраны) и обратного действия.

Рис. 1. Конструкция мембранного исполнительного механизма прямого действия: 1, 3 — крышки, 2—мембрана, 4 — опорный диск, 5 — кронштейн, 6 — пружина, 7 — шток, 8 — опорное кольцо, 9 — регулировочная гайка, 10 — соединительная гайка


Основными конструктивными элементами мембранного исполнительного механизма являются мембранная пневматическая камера с кронштейном и подвижная часть.

Мембранная пневматическая камера механизма прямого действия (рис. 1) состоит из крышек 3 и 1 и мембраны 2. Крышка 3 и мембрана 2 образуют герметическую рабочую полость, крышка 1 прикреплена к кронштейну 5. К подвижной части относятся опорный диск 4, к которому прикреплена мембрана 2, шток 7 с соединительной гайкой 10 и пружина 6. Пружина одним концом упирается в опорный диск 4, а другим через опорное кольцо 8 в регулировочную гайку 9, служащую для изменения начального натяжения пружины и направления движения штока.

08.12.2019

На сегодняшний день существует несколько видов ламп для . У каждого из них есть свои плюсы и минусы. Рассмотрим виды ламп которые наиболее часто используются для освещения в жилом доме или квартире.

Первый вид ламп – лампа накаливания . Это самый дешевый вид ламп. К плюсам таких ламп можно отнести ее стоимость, простоту устройства. Свет от таких ламп является наиболее лучшим для глаз. К минусам таких ламп можно отнести невысокий срок службы и большое количество потребляемой электроэнергии.

Следующий вид ламп – энергосберегающие лампы . Такие лампы можно встретить абсолютно для любых типов цоколей. Представляют из себя вытянутую трубку в которой находится специальный газ. Именно газ создает видимое свечение. У современных энергосберегающих ламп, трубка может иметь самую разнообразную форму. Плюсы таких ламп: низкое энергопотребление по сравнению с лампами накаливания, дневное свечение, большое выбор цоколей. К минусам таких ламп можно отнести сложность конструкции и мерцание. Мерцание обычно незаметно, но глаза будут уставать от света.

28.11.2019

Кабельная сборка — разновидность монтажного узла. Кабельная сборка представляет собой несколько местных , оконцованных с двух сторон в электромонтажном цехе и увязанных в пучок. Монтаж кабельной трассы, осуществляют, укладывая кабельную сборку в устройства крепления кабельной трассы (рис. 1).

Судовая кабельная трасса - электрическая линия, смонтированная на судне из кабелей (пучков кабелей), устройств крепления кабельной трассы, уплотнительных устройств и т. п. (рис. 2).

На судне кабельную трассу располагают в труднодоступных местах (по бортам, подволоку и переборкам); они имеют до шести поворотов в трех плоскостях (рис. 3). На крупных судах наибольшая длина кабелей достигает 300 м, а максимальная площадь сечения кабельной трассы — 780 см 2 . На отдельных судах с суммарной длиной кабелей свыше 400 км для размещения кабельной трассы предусматривают кабельные коридоры.

Кабельные трассы и проходящие по ним кабели подразделяют на местные и магистральные в зависимости от отсутствия (наличия) устройств уплотнения.

Магистральные кабельные трассы подразделяют на трассы с торцовыми и проходными коробками в зависимости от типа применения кабельной коробки. Это имеет смысл для выбора средств технологического оснащения и технологии монтажа кабельной трассы.

21.11.2019

В области разработки и производства приборов КИПиА американская компания Fluke Corporation занимает одну из лидирующих позиций в мире. Она была основана в 1948 году и с этого времени постоянно развивает, совершенствует технологии в области диагностики, тестирования, анализа.

Инновации от американского разработчика

Профессиональное измерительное оборудование от мультинациональной корпорации используется при обслуживании систем обогрева, кондиционирования и вентиляции, холодильных установок, проверки качества воздуха, калибровки электрических параметров. Фирменный магазин Fluke предлагает приобрести сертифицированное оборудование от американского разработчика. Полный модельный ряд включает:
  • тепловизоры, тестеры сопротивления изоляции;
  • цифровые мультиметры;
  • анализаторы качества электрической энергии;
  • дальномеры, вибромеры, осциллографы;
  • калибраторы температуры, давления и многофункциональные аппараты;
  • визуальные пирометры и термометры.

07.11.2019

Используют уровнемер для определения уровня разных видов жидкостей в открытых и закрытых хранилищах, сосудах. С его помощью измеряют уровень вещества или расстояние до него.
Для измерения уровня жидкости используют датчики, которые отличаются по типу: радарный уровнемер , микроволновый (или волноводный), радиационный, электрический (или емкостный), механический, гидростатический, акустический.

Принципы и особенности работы радарных уровнемеров

Стандартными приборами не определить уровень химически агрессивных жидкостей. Только радарный уровнемер способен его измерить, так как не соприкасается с жидкостью при работе. К тому же радарные уровнемеры более точные по сравнению, например, с ультразвуковыми или с емкостными.

Судовой электрической станцией (СЭС) называется технический комплекс, состоящий из источников электрической энергии и главного распределительного щита (ГРЩ), предназначенный для генерирования электроэнергии и ее подачи в электрическую сеть к приемникам (потребителям).

Генераторные агрегаты ГА с помощью кабелей К и автома­тических выключателей QF подключаются к внутренним соеди­нительным линиям ГРЩ, называемым шинами Ш , к которым через коммутационно-защитные аппараты-выключатели QF 1... J присоединены фидеры судовой кабельной сети Ф1, Ф2, Ф J , питающие потребители электроэнергии ПЭ . На стан­ции должно быть не менее двух ГА.

Состав главных элементов электрических станций (электро­станций) и схемы их соединения (схемы главного тока), образующие структуру СЭС, должны обеспечивать возможность:

раздельной и параллельной работы генераторных агрегатов СЭС как на всю СЭЭС, так и на отдельные ее части (секции ГРЩ, фидеры);

электрической защиты генераторов, ГРЩ и подсоединенных к ним кабельных линий при возникновении ненормальных (ава­рийных) режимов;

связи с береговыми электрическими системами и СЭЭС дру­гих судов;

управления качеством и распределением генерируемой и потребляемой электрической энергии между источниками (при параллельной работе) и потребителями;

выполнения эксплуатационного наблюдения за элементами СЭЭС и проведения ремонтных работ без нарушения минималь­но необходимого обеспечения судна электроэнергией.

В зависимости от рода источников электроэнергии различа­ют СЭС постоянного и переменного токов. Последние наиболее распространены на судах.

Электрические станции, операции управления которыми не автоматизированы или автоматизированы частично, требуют для обслуживания постоянной вахты (знак автоматизации А2).

Все более широкое применение в СЭЭС находят полностью автоматизированные СЭС (знак автоматизации А1), не требую­щие постоянного обслуживания вахтенным персоналом. Наибо­лее распространены полуавтоматические СЭС, управляемые оператором из центрального поста.

Судовые электростанции подразделяют на основные, аварий­ные и специальные. Основные СЭС обеспечивают электроэнер­гией все технические средства судов в нормальных рабочих режимах; аварийные СЭС - только важнейшие потребители в случаях прекращения питания (выхода из строя) основной электростанции. Специальные СЭС питают особые группы пот­ребителей, например судовые технологические комплексы.

Обычно на судне предусматривается одна основная электро­станция, но при большом числе и мощности генераторов воз­можны СЭЭС с несколькими основными электростанциями. Основные электростанции располагают в трюмных помещениях.

На всех судах наряду с основными генераторами обязатель­но должен быть аварийный источник электроэнергии, который вместе с аварийным распределительным щитом (АРЩ) образу­ет аварийную электростанцию. Аварийная СЭС размещается в специальном помещении, находящемся выше палубы перебо­рок вне шахты машинного отделения и имеющем непосредст­венный выход на открытую палубу.

В качестве аварийного источника электроэнергии используют автономный ДГ, расходная цистерна с топливом которого также размещается в помещении аварийной СЭС. Емкость цистерны должна быть достаточной для обеспечения непрерывной работы ДГ в течение 36 ч на пассажирских судах, 6 ч -на грузовых судах валовой вместимостью 5000 peг. т и более 3 ч - на осталь­ных судах. Аварийный ДГ пускается автоматически электростартером или сжатым воздухом, чтобы не более чем через 45с восстановить питание потребителей при исчезновении напряже­ния.

От АРЩ получают питание непосредственно по отдельным фидерам наиболее важные для обеспечения жизнедеятельности поврежденного судна потребители: гирокомпас, радиостанции, рулевая машина, сигнально-отличительные огни, освещение основных постов и помещений, средства тушения пожара, водо­отливные средства и т. п.

Все оборудование аварийной электростанции должно надеж­но работать при одновременном длительном крене и дифференте.

В качестве основного или дополнительного аварийного источ­ника электрической энергии могут применяться АБ для питания аварийного освещения и сигнализации, а также для управления водонепроницаемыми дверями. Минимальное время работы таких батарей 3...36 ч в зависимости от типа судна и его водо­измещения.

Схемы главного тока электростанций, предусматривающие длительную или кратковременную (на период перевода нагруз­ки) параллельную работу генераторных агрегатов, отличаются в зависимости от их состава, а также выбранного числа секций шин ГРЩ и связей между ними, принятых для удобства и на­дежности эксплуатации СЭС.

Схемы главного тока типизированы для СЭС с отдельными секциями стояночных приемников и без них, а также приемников (двигателей), соизмеримых по мощности с генераторами.

Число фидеров, питающих потребителей, и включающих их автоматов на ГРЩ измеряется десятками.

Аварийная электростанция имеет электрическую связь в виде фидера от основной электростанции. В нормальных условиях по перемычке подается напряжение от ГРЩ на АРЩ. При исчезновении напряжения на шинах основной электростанции поступает сигнал на автоматический запуск АДГ. После пуска генератор подключается к шинам аварийной станции контак­тором КМ.

Электростанции характеризуются, в первую очередь, типом, числом и номинальной мощностью установленных генераторов, которые определяются в зависимости от мощности, требующей­ся в любой момент для действия электрифицированных техни­ческих средств судна.