Генетика – вековые открытия и становление науки. Советские учёные-генетики Важнейшие открытия в генетике

Федеральное агентство по образованию Российской Федерации

Государственное образовательное учреждение высшего профессионального образования

«Южно-Уральский государственный университет»

Факультет «Экономика и управление»

Кафедра «Экономика, управление и инвестиции»

История развития генетики. Вклад русских ученых

РЕФЕРАТ

по дисциплине «Концепции современного естествознания»

Проверил

О.М. Баева

студент группы ЭиУ-232

А.И. Кулешова

________________________2010г.

Реферат защищен

с оценкой

_____________________________

________________________2010г.

Челябинск 2010

Цель реферата – определить роль русских ученых в становлении генетики как науки и в ее дальнейшем развитии.

Задачи реферата – рассмотреть основные открытия, сделанные русскими учеными и сделать выводы об их значимости для науки.

Рассмотрены ключевые достижения русских ученых, определившие дальнейшее развитие генетики. Сделаны выводы о ценности вклада русских ученых в науку.

АННОТАЦИЯ.. 2

ВВЕДЕНИЕ.. 4

1 РАЗВИТИЕ ГЕНЕТИКИ В РОССИИ.. 5

2 НИКОЛАЙ ИВАНОВИЧ ВАВИЛОВ И ЕГО ВКЛАД В ГЕНЕТИКУ.. 6

2.1 Учение об иммунитете растений. 7

2.2 Закон гомологических рядов в наследственной изменчивости. 8

3 НИКОЛАЙ КОНСТАНТИНОВИЧ КОЛЬЦОВ.. 12

4 ИСКУССТВЕННОЕ ПОЛУЧЕНИЕ МУТАЦИЙ.. 13

4.1 Вклад Г.А. Надсона и его учеников. 14

4.2 Вклад Н.В. Тимофеева-Ресовского. 14

4.3 Химический мутагенез. 16

5 ПРОБЛЕМА ДРОБИМОСТИ ГЕНА.. 17

6 МОЛЕКУЛЯРНАЯ ГЕНЕТИКА.. 19

ЗАКЛЮЧЕНИЕ.. 20

БИБЛИОГРАФИЧЕСКИЙ СПИСОК.. 21

ВВЕДЕНИЕ

Генетика — наука о наследственности и её изменчивости – получила развитие в начале XX в., после того как исследователи обратили внимание на законы Г. Менделя, открытые в 1865 г., но остававшиеся без внимания в течение 35 лет. За короткий срок генетика выросла в разветвленную биологическую науку с широким кругом экспериментальных методов и направлений. Название генетика было предложено английским ученым У. Бэтсоном в 1906 г. Исследователями классического периода развития генетики были выяснены основные закономерности наследования и доказано, что наследственные факторы (гены) сосредоточены в хромосомах. Дальнейший прогресс в изучении закономерностей хранения и реализации генетической информации сдерживался по двум причинам. Во-первых, из-за слишком объемных экспериментов, связанных с более глубоким изучением генов, во-вторых, ввиду невозможности понять работу генов без углубленного исследования превращения молекул, вовлеченных в генетические процессы. Переход к генетическим исследованиям микроорганизмов, позволивший избегать многих трудностей, был вполне закономерен. Такой переход осуществился в 50-х годах. В 1941 г. Дж. Бидл и Э.

История генетики

В последние годы эти исследования получили широкий размах и проводятся на самых различных биологических объектах.

Задачей данного реферата является отражение наиболее важных открытий, сделанных русскими учеными в области генетики, их анализ и определение их значимости для науки.

Для раскрытия темы были взяты как научные труды, так и современные интернет-ресурсы, что должно дать проверенные данные и современную точку зрения на них.

1 РАЗВИТИЕ ГЕНЕТИКИ В РОССИИ

Если не считать опытов по гибридизации растений в XVIII в., первые работы по генетике в России были начаты в начале XX в. как на опытных сельскохозяйственных станциях, так и в среде университетских биологов, преимущественно тех, кто занимался экспериментальной ботаникой и зоологией.

После революции и гражданской войны 1917-1922 гг. началось стремительное организационное развитие науки. К концу 1930-х годов в СССР была создана обширная сеть научно-исследовательских институтов и опытных станций (как в Академии наук СССР, так и во Всесоюзной академии сельскохозяйственных наук имени Ленина (ВАСХНИЛ)), а также вузовских кафедр генетики. Признанными лидерами направления были Н. И. Вавилов, Н. К. Кольцов, А. С. Серебровский, С. С. Четвериков и др. В СССР издавали переводы трудов иностранных генетиков, в том числе Т. Х. Моргана, Г. Мёллера, ряд генетиков участвовали в международных программах научного обмена. Американский генетик Г. Мёллер работал в СССР (1934-1937), советские генетики работали за границей. Н. В. Тимофеев-Ресовский - в Германии (с 1925 г.), Ф. Г. Добржанский - в США (с 1927 г.).

В 1930-е гг. в рядах генетиков и селекционеров наметился раскол, связанный с энергичной деятельностью Т. Д. Лысенко и И. И. Презента. По инициативе генетиков был проведён ряд дискуссий (наиболее крупные - в 1936 и 1939 г.), направленных на борьбу с подходом Лысенко.

На рубеже 1930-1940-х гг. в ходе так называемого Большого террора большинство сотрудников аппарата ЦК ВКП (б), курировавших генетику, и ряд видных генетиков были арестованы, многие расстреляны или погибли в тюрьмах (в том числе, Н. И. Вавилов). После войны дебаты возобновились с новой силой. Генетики, опираясь на авторитет международного научного сообщества, снова попытались склонить чашу весов в свою сторону, однако с началом холодной войны ситуация значительно изменилась. В 1948 году на августовской сессии ВАСХНИЛ Т. Д. Лысенко, пользуясь поддержкой И. В. Сталина, объявил генетику лженаукой. Лысенко воспользовался некомпетентностью партийного руководства наукой, «пообещав партии» быстрое создание новых высокопродуктивных сортов зерна («ветвистая пшеница») и др. С этого момента начался период гонений на генетику, который получил название лысенковщины и продолжался вплоть до снятия Н. С. Хрущева с поста генерального секретаря ЦК КПСС в 1964 г.

Лично Т. Д. Лысенко и его сторонники получили контроль над институтами отделения биологии АН СССР, ВАСХНИЛ и вузовскими кафедрами. Были изданы новые учебники для школ и вузов, написанные с позиций «Мичуринской биологии». Генетики вынуждены были оставить научную деятельность или радикально изменить профиль работы. Некоторым удалось продолжить исследования по генетике в рамках программ по изучению радиационной и химической опасности за пределами организаций, подконтрольных Т. Д. Лысенко и его сторонникам.

После открытия и расшифровки структуры ДНК, физической базы генов (1953 г.), с середины 1960-х г. началось восстановление генетики. Министр просвещения РСФСР В. Н. Столетов инициировал широкую дискуссию между лысенковцами и генетиками, в результате было опубликовано много новых работ по генетике. В 1963 г. вышел в свет университетский учебник М. Е. Лобашева «Генетика», выдержавший впоследствии несколько изданий. Вскоре появился и новый школьный учебник Общая биология под редакцией Ю. И. Полянского, используемый, наряду с другими, и по сей день.

Вывод по разделу один

Развитие генетики в России шло сложным путем, претерпевая гонения со стороны властных структур, что значительно тормозило процесс развития данной науки.

2 НИКОЛАЙ ИВАНОВИЧ ВАВИЛОВ И ЕГО ВКЛАД В ГЕНЕТИКУ

Николай Иванович Вавилов (13 (25) ноября 1887, Москва, Российская империя - 26 января 1943, Саратов, РСФСР, СССР) - российский и советский учёный-генетик, ботаник, селекционер, географ, академик АН СССР, АН УССР и ВАСХНИЛ. Президент (1929-1935), вице-президент (1935-1940) ВАСХНИЛ, президент Всесоюзного географического общества (1931-1940), основатель (1920) и бессменный до момента ареста директор Всесоюзного института растениеводства (1930-1940), директор Института генетики АН СССР (1930-1940), член Экспедиционной комиссии АН СССР, член коллегии Наркомзема СССР, член президиума Всесоюзной ассоциации востоковедения. В 1926-1935 годах член Центрального исполнительного комитета СССР, в 1927-1929 - член Всероссийского Центрального Исполнительного Комитета.

Организатор и участник ботанико-агрономических экспедиций, охвативших большинство континентов (кроме Австралии и Антарктиды), в ходе которых выявил древние очаги формообразования культурных растений. Создал учение о мировых центрах происхождения культурных растений. Обосновал учение об иммунитете растений, открыл закон гомологических рядов в наследственной изменчивости организмов. Внёс существенный вклад в разработку учения о биологическом виде. Под руководством Вавилова была создана крупнейшая в мире коллекция семян культурных растений. Он заложил основы системы государственных испытаний сортов полевых культур. Сформулировал принципы деятельности главного научного центра страны по аграрным наукам, создал сеть научных учреждений в этой области.

2.1 Учение об иммунитете растений

Трагедия Вавилова и разгром генетики в СССР

Сегодня, генетика стала приграничной территорией для научных исследований. В этой области осуществлены революционные прорывы, особенно в области медицинских наук. Давайте посмотрим на некоторых известных ученых, внесших неоценимый вклад в области генетических исследований.

Грегор Мендель. Также известен как отец современной генетики, был вторым ребенком Антона и Розине Менделя, и родился 22 июля 1822 года. Он происходил из бедной крестьянской семьи, и, следовательно, должен был зарабатывать деньги, чтобы заплатить за высшее образование. Интерес Менделя в исследованиях был основан на любви к природе и задачах эволюции. Он начал свои эксперименты на горохе, потому что он был доступен во многих вариантах и имел много видов. Проведенные эксперименты им были просты и убедительны, анализ которых дал ему два наиболее важных законов наследования. Первый закон говорит о том, что черты передаются от родителей к потомству. Второй, что черты потомства не всегда аналогичны родительских растений. Биологи долгое время пренебрегали работой ученого заявив, что "статистик" не может дать объяснения законов наследственности. Его работа оставалась непризнанной до 1901 года. В это время трое ученых Уго де Фриза, Карл Корренс, и Эрих фон Чермак независимо друг от друга обнаружили тоже, что и Мендель. Со временем, его законы были тщательно изучены, и теперь они рассматриваются как фундаментальные законы наследования. Тем не менее, его работа увидела свет очень поздно, и он был не в состоянии видеть ее результаты. Он был похоронен 6 января 1884 года в возрасте 62 лет.

Барбара МакКлинток. Барбара — американский ученый и один из самых выдающихся цитогенетиков мира. Как пишут на сайте "Узнай Все", она родилась в семье врачей июня 1902 года, в Хартфорде, штат Коннектикут, закончила университет Корнелла, получила степень бакалавра и магистра, позже доктора философских наук.

В 1927 году она была назначена в качестве инструктора ботаники. В 1930 году Барбара стала первым человеком, который описал крестообразные взаимодействия гомологичных хромосом во время мейоза. В 1931 году вместе с аспирантом Гарриет Крейтон, она доказала связь между гомологичных хромосом во время мейоза и рекомбинации генетических признаков. Она опубликовала первую генетическую карту для кукурузы в 1931 году, показав порядка трех генов на хромосоме. В 1936 году она приняла позицию доцента по кафедре ботаники, в Университете Миссури. В 1938 году Барбара провела цитогенетический анализ центромеры, описывая ее организационную структуру и функцию. За ее новаторскую работу в области генетики кукурузы, а также визуализации хромосом она получила место среди ведущих ученых в области генетики. В 1944 году она стала третьей женщиной, избранной в качестве члена престижной Национальной академии наук.

Она умерла в Хантингтон, Нью-Йорке 2 сентября 1992 года в возрасте 90 лет. По сей день, ее работа имеет значение, несмотря на то, что многое из этого было завершено более полувека назад, до появления молекулярной эпохи.

Эти открытия в генетике навсегда изменят наше с вами будущее! Уже сегодня мы можем предупреждать развитие многих опасных заболеваний, предсказывать риски наследования тяжелых болезней, диагностировать синдром Дауна у еще не родившихся детей, вычислять проблемы с сердцем, останавливать смертельные инфекции.

1. Ген интеллекта

Его удалось открыть американским ученым, которые обратили внимание на странную способность гена KL-VS повышать IQ человека до 9 пунктов. Естественно, эти данные еще не до конца изучены, но медики надеются применить открытие по отношению к детям с задержками в развитии. Активация этого гена не сделает из них гениев, но хотя бы повысит заданный природой потенциал, что уже неплохо.

2. Ген глупости

В противоположность вышесказанному ученые из Техасского университета нашли объективное объяснение низкому IQ, которое может провоцировать генетическое отклонение с кодом RGS14. Именно этот ген обнаружили у лабораторных крыс, а когда его нейтрализовали, гиппокамп стал работать в разы активнее, что помогло маленьким испытуемым быстрее адаптироваться к внешней среде и лучше запоминать схемы лабиринтов. Так ученые пришли к выводу, что существуют гены, которые мешают нам накапливать знания, но их устранение поможет усилить интеллектуальные способности.

3. Ген старости

Тема здоровья и долгожительства волновала умы людей тысячелетиями, и только в 2017 случился прорыв – удалось обнаружить гены старения. Подопытными стали люди из общины амишей, представители которой редко болели и в среднем жили на 15 лет дольше обычных показателей. С их разрешения ученые получили информацию по ДНК и нашли зацепку в мутациях гормона роста и интеллекта. Оказалось, данные показатели напрямую привязаны к здоровью, а значит, как следует с ними разобравшись, можно будет замедлить старение.

4. Ген счастья

Если вы думаете, что ваше настроение зависит только от скачки гормонов, жизненных достижений или погоды за окном – вы ошибаетесь. Исследователи Лондонской школы здоровья обнаружили ген 5-HTTLPR, который способен ускорять доставку серотонина к мозгу, тем самым заставляя человека чувствовать себя счастливее. Самое интересное, что именно «ген счастья» (как его прозвали ученые) делил людей на позитивистов и негативистов: те, у кого он был активен, чаще высказывались о том, что довольны своей жизнью; те, у кого он был пассивен, в тестах проявляли повышенную тревожность и давали больше пессимистических оценок. Кто знает, может, это открытие в генетике поможет эффективнее лечить депрессию?

5. Польза вирусов

А что если вирусы являются не только угрозой, но и источником новых генов для всех живых видов? К такому открытию ученые пришли год назад, обнаружив, что именно вирусам под силу полностью изменять структуру ДНК, привнося в нее совершенно нетипичные сочетания генов и тем самым способствуя эволюции. Кто знает, возможно, человек стал тем, кем он есть сейчас, благодаря влиянию одноклеточных, роль которых слишком долго недооценивали? Не просто же так наши ДНК имеют так много совпадений… Это открытие планируют изучить подробнее, чтобы раскрыть все возможности подобного поворота.

6. Ген лишнего веса

Наблюдая за поведением лабораторных мышей, ученые задались вопросом: почему подопытных кормят одинаково, а весят они все по-разному? Эту особенность удалось объяснить, открыв ген IRX3. Оказалось, у мышей, не склонных к набору веса, этот ген был поврежден, в отличие от их более упитанных собратьев. Последнее дало повод говорить о том, что можно вылечить ожирение революционным способом – заставить IRX3 в ДНК человека мутировать. Тогда организм перестанет реагировать на высококалорийную пищу набором веса, и проблема с диабетом решится сама собой.


Иллюстрация: Washingtonpost.com

7. Лечение Альцгеймера

Еще одно исследование провели японские ученые, открыв ген klc1, способный в два раза увеличивать бета-амилоидный белок в тканях мозга, который провоцирует развитие старческого маразма. Есть предположение, что его заблокировать, опасный белок перестанет отравлять мозг, и это способствует излечению больных Альцгеймером. Эксперименты пока ведутся, а мы надеемся, что они будут удачными.

8. Создание ДНК-телепорта

Недавно Джон Вентер доказал, что печатать живые молекулы вирусов и бактерий вполне реально, создав первый в мире 3D-принтер от мира генетики. Что нас ждет дальше? Ученые уже ведут разговоры о том, чтобы колонизировать с помощью этого аппарата другие планеты. Например, отправить ДНК-принтер на Марс и с помощью радиосигналов напечатать на планете необходимые штаммы бактерий, которые преобразуют окружающую среду, сделав ее пригодной для проживания человека. Если вы думаете, что такой сценарий утопичен, то как вам такая новость: этим проектом уже заинтересовался Илон Маск, который давно доказал – в этом мире нет ничего невозможного!

А какие открытия в генетике вас удивили больше всего? Участвуйте в голосовании!

Биология - очень объемная наука, которая охватывает все стороны жизни каждого живого существа, начиная от строения его микроструктур внутри тела и заканчивая связью с внешней средой и космосом. Именно поэтому разделов у этой дисциплины очень много. Однако одним из самых молодых, но перспективных и имеющих сегодня особенно важное значение является генетика. Она зародилась позже остальных, но сумела стать самой актуальной, важной и объемной наукой, имеющей собственные цели, задачи и объект изучения. Рассмотрим, какова история развития генетики и что представляет собой эта ветвь биологии.

Генетика: предмет и объект изучения

Свое название наука получила только в 1906 году по предложению англичанина Бэтсона. Определение ей можно дать следующее: это дисциплина, изучающая механизмы наследственности, ее изменчивости у разных видов живых существ. Следовательно, основной целью генетики является выяснение строения структур, ответственных за передачу наследственных признаков, и исследование самой сути этого процесса.

Объектами изучения являются:

  • растения;
  • животные;
  • бактерии;
  • грибы;
  • человек.

Таким образом, она охватывает вниманием все царства живой природы, не забыв ни одного из представителей. Однако на сегодняшний день максимально поставлены на поток исследования именно одноклеточных простейших существ, все эксперименты по генетике проводятся на них, а также на бактериях.

Чтобы прийти к имеющимся теперь результатам, история развития генетики прошла длинный и тернистый путь. В разные периоды времени она подвергалась то интенсивному развитию, то полному забвению. Однако в итоге все же получила достойное место среди всей семьи биологических дисциплин.

История развития генетики кратко

Чтобы охарактеризовать основные вехи становления рассматриваемой ветви биологии, следует обратиться в не столь далекое прошлое. Ведь свое начало генетика берет из XIX века. А официальной датой ее зарождения как полностью обособленной дисциплины считается 1900 год.

Кстати, если говорить совсем уже об истоках, то следует заметить попытки селекции растений, скрещивания животных еще очень давно. Ведь этим занимались земледельцы и скотоводы еще в XV веке. Просто происходило это не с научной точки зрения.

Таблица "История развития генетики" поможет освоить ее главные исторические моменты становления.

Период развития Основные открытия Ученые
Начальный (вторая половина XIX века)

Гибридологические исследования в области растений (исследование поколений на примере вида гороха)

Грегори Мендель (1866 год)

Открытие процесса изучение полового размножения и его значения для закрепления и передачи признаков от родителей к потомству Страсбургер, Горожанкин, Гертвиг, Ван-Беневин, Флемминг, Чистяков, Вальдейр и другие (1878-1883 гг.)
Средний (начало-середина XX века) Это период максимально интенсивного роста развития генетических исследований, если рассматривать историческую эпоху в целом. Ряд открытий в области клетки, его значения и механизмов работы, расшифровка строения ДНК, разработка и скрещивания, закладывание всех теоретических основ генетики приходится именно на этот период времени Множество отечественных ученых и генетиков со всего мира: Томас Морган, Навашин, Серебряков, Вавилов, де Фриз, Корренс, Уотсон и Крик, Шлейден, Шванн и многие другие
Современный период (вторая половина XX века и до сегодняшнего дня) Этот период характеризуется рядом открытий в области микроструктур живых существ: детальное изучение строения молекул ДНК, РНК, белка, ферментов, гормонов и прочее. Выяснение глубинных механизмов кодирования признаков и передача их по наследству, генетический код и его расшифровка, механизмы трансляции, транскрипции, репликации и так далее. Огромное значение имеют дочерние генетические науки, которых именно в этот период сформировалось немало В. Эльвинг, Ноден и другие

В приведенной выше таблице история развития генетики кратко отображена. Далее рассмотрим более подробно главные открытия разных периодов.

Основные открытия XIX века

Главными трудами этого периода стали работы трех ученых из разных стран:

  • в Голландии Г. де Фриз - изучение особенностей наследования признаков у гибридов разных поколений;
  • в Германии К. Корренс - сделал то же самое на примере кукурузы;
  • в Австрии К. Чермак - повторил опыты Менделя на посевном горохе.

Все эти открытия базировались на написанных 35 годами ранее работах Грегори Менделя, который проводил многолетние исследования и все результаты фиксировал в научных трудах. Однако эти данные не вызвали интереса у его современников.

В этот же период история развития генетики включает в себя ряд открытий по изучению половых клеток человека и животных. Доказано, что некоторые признаки, которые передаются по наследству, закрепляются без изменений. Другие же являются индивидуальными для каждого организма и выступают результатом приспособления к условиям окружающей среды. Работы проводились Страсбургером, Чистяковым, Флеммингом и многими другими.

Развитие науки в XX веке

Так как официальной датой рождения считается то неудивительно, что именно в XX веке вершилась история развития генетики. исследования, созданный к этому времени, позволяет медленно, но верно получать потрясающие результаты.

Создание новейших достижений техники дает возможность заглянуть в микроструктуры - это еще более продвигает генетику вперед в развитии. Так, были установлены:

  • структуры ДНК и РНК;
  • механизмы их синтеза и репликации;
  • молекула белка;
  • особенности наследования и закрепления;
  • локализация отдельных признаков в хромосомах;
  • мутации и их проявления;
  • появился доступ к управлению генетическим аппаратом клетки.

Наверное, одним из самых важных в этот период открытий стала расшифровка ДНК. Это было сделано Уотсоном и Криком в 1953 году. В 1941-м было доказано, что признаки кодируются в белковых молекулах. С 1944 по 1970 г. сделаны максимальные открытия в области строения, репликации и значения ДНК и РНК.

Современная генетика

История развития генетики как науки на современном этапе проявляется в интенсификации разных ее направлений. Ведь сегодня существуют:

  • молекулярная генетика;
  • медицинская;
  • популяционная;
  • радиационная и прочие.

Вторую половину XX и начало XXI века для рассматриваемой дисциплины принято считать геномной эрой. Ведь современные ученые вмешиваются уже непосредственно в весь генетический аппарат организма, учатся изменять его в нужную сторону, управлять происходящими там процессами, снижать патологические проявления, купировать их в корне.

История развития генетики в России

В нашей стране рассматриваемая наука начала свое интенсивное становление лишь во второй половине XX века. Все дело в том, что долгое время наблюдался период застоя. Это времена правления Сталина и Хрущева. Именно в эту историческую эпоху случился раскол в ученых кругах. Т. Д. Лысенко, имевший власть, заявил о том, что все исследования в области генетики недействительны. А сама она не является наукой вообще. Заручившись поддержкой Сталина, он всех известных генетиков того времени отправил на смерть. Среди них:

  • Вавилов;
  • Серебровский;
  • Кольцов;
  • Четвериков и другие.

Многие вынуждены были подстраиваться под требования Лысенко, чтобы избежать смерти и продолжать исследования. Некоторые эмигрировали в США и другие страны.

Только после ухода с поста Хрущева генетика в России получила свободу в развитии и интенсивный рост.

Отечественные ученые-генетики

Самыми значительными открытиями, которыми может гордиться рассматриваемая наука, стали и те, что осуществились нашими соотечественниками. История развития генетики именно в России связана с такими именами, как:

  • Николай Иванович Вавилов (учение об иммунитете растений, и прочее);
  • Николай Константинович Кольцов (химический мутагенез);
  • Н. В. Тимофеев-Ресовский (основоположник радиационной генетики);
  • В. В. Сахаров (природа мутаций);
  • М. Е. Лобашев (автор методических пособий по генетике);
  • А. С. Серебровский;
  • К. А. Тимирязев;
  • Н. П. Дубинин и многие другие.

Этот список можно продолжать еще долго, ведь во все времена русские умы были великими во всех отраслях и научных областях знаний.

Направления в науке: медицинская генетика

История развития медицинской генетики берет свое начало гораздо раньше, чем общая наука. Ведь еще в XV-XVIII веках были доказаны явления передачи по наследству таких заболеваний, как:

  • полидактилия;
  • гемофилия;
  • прогрессирующая хорея;
  • эпилепсия и прочие.

Была установлена отрицательная роль инцеста в сохранении здоровья и нормального развития потомства. Сегодня этот раздел генетики является очень важной областью медицины. Ведь именно он позволяет контролировать проявления и купировать многие генетические мутации еще на стадии эмбрионального развития плода.

Генетика человека

История развития берет свое начало намного позже общей генетики. Ведь заглянуть внутрь хромосомного аппарата людей стало возможным лишь при использовании самых современных технических устройств и методов исследования.

Человек стал объектом генетики в первую очередь с точки зрения медицины. Однако основные механизмы наследования и передачи признаков, закрепления и проявления их у потомства для людей ничем не отличаются от таковых у животных. Поэтому не обязательно объектом исследования использовать именно человека.

Генетика официально одна из молодых наук, хотя факторы наследственности и свойств различных организмов, в том числе и самого человека, интересовали людей на протяжении всей эволюции. Генетика сама по себе увлекательна и уникальна, но в то же время одна из самых сложных наук современности, требующая многолетних исследований.

К истокам развития

Становления генетики имеет длинный доисторический период. О наличии людей, которые имели особенные отличия от других, например, сиамские близнецы, сказано ещё в древних исторических трактатах, это сегодня мы называем подобные феномены генетической мутацией. А в далёкой древности эти люди воспринимались как прокажённые. Описание поколений, которые имели кровные, родовые связи между собой встречаются ещё в библии, начиная со времён Адама и Евы. Поэтому обозначение генетики как молодой науки, относительно. Впервые законы наследственности, которые положили фундамент в строение официально признанной науки, были изложены в 1865 году Менделем. По ряду разных причин, более чем на 30 лет об этих законах забыли, до момента пока в 1900 году три ботаника, живущих в разных уголках планеты, не открыли их по-новому. Так и стало принято считать весну 1900 года новой науки, а сам термин «генетика» появился через шесть лет после в 1906 году. С того момента, генетика шагнула далеко вперёд, непрерывно расширяя круг исследований. Открытий в этой области уже сделано немало и ещё ни одно ожидает учёных впереди на пути к главной цели - разгадке природы гена.

Важные открытия генетики в датах

На протяжении всего времени существования науки наблюдались новые открытия, которые влияли на развитие той или иной области генетики, их много и происходят они постоянно, остановимся на самых интересных из них:

· 1856 — установление фактора наследования Менделем;

· 1909 — появления понятия о генотипе;

· 1927 — доказано, что рентгеновские лучи имеют непосредственное влияние на мутацию всех живых организмов;

· 1944 — первые исследования ДНК;

· 1953 — создана первая структурная модель ДНК молекулы;

· 1962 — осуществлено первое клонирование живого организма (на опыте с лягушкой);

· 1969 — благодаря химическим соединениям, искусственным путём получен первый ген;

· 1985 — открытие ПЦР;

· 1986 — создание антионкогена, его клонирование и наступление новой эры борьбы с раком;

· 1988 — проект «Геном человека»;

· 2001 — расшифровка генома человека.

Удивительные генные открытия за последнее десятилетие

Ген интеллекта. Модель ДНК позволила узнать много интересного и неизведанного об человеческом организме. Интересное умозаключение сделали учёные из Калифорнии, они выявили белок, который получил название «клото» отвечающий за разум, во взаимосвязи его с геном KL-VS. Этот белок увеличивает уровень IQ сразу на шесть пунктов. Самое удивительное, его, возможно, синтезировать в лабораторных условиях искусственно, что позволит повышать интеллект человека.

Ген глупости. Учёные из Техаса выявили ген глупости. Это ген RGS14, на опыте с мышами они выявили, что если «отключить» действие этого гена, подопытные начинают быстрее ориентироваться по лабиринту и запоминать расположение находящихся там объектов. Исследователи рассчитывают, что станет возможным создать средство, которое сможет блокировать работу RGS14 и сделает человечество умнее, подарив ранее не видимые интеллектуальные способности, но для воплощения этой идеи в жизнь потребуется ещё не одно десятилетие.

Ген ожирения. Появилась прекрасная возможность списывать появления лишних килограммов на ген IRX3 и винить его во всех тяжких. Определено, что он влияет на процент жира по отношению к общей массе. Дальнейшие исследования этого направления позволят найти эффективное средство от лишнего веса и сахарного диабета.

Ген счастья. Лондонскими специалистами описан ген, его название 5-HTTLPR, отвечающий за эмоции. Суть его действия полагается в том, что благодаря нему происходит снабжение клеток серотонином. А он, в свою очередь, отвечает за наши эмоции, заставляя нас радоваться или огорчаться, всё зависит от сопутствующих факторов. Люди, у которых серотонин в ограниченном количестве больше подвержены депрессии и упадническому настроению. По мнению британских учёных, чем длиннее вариация 5-HTTLPR, тем лучше происходит доставка серотонина.

Самые необычные эксперименты

С каждым витком развития генетики, учёные пытаются сделать всё новые, неизведанные ранее открытия и порой они становятся даже интересными, но в то же самое время нелепыми.

Поразительное и необъяснимое явление наблюдается в небольшом городке Бразилии, где каждая пятая женщина рождает близнецов, мало этого они все белокурые и с голубыми глазами, что абсолютно не свойственно бразильцам. Предполагается, что причастен к этому доктор Менгель, известный своими ужасными экспериментами над людьми, он загубил тысячи жизни ни в чём не повинных людей, за это был прозван «Ангелом смерти». Его цель подобных экспериментов была выявить и поднять частоту рождаемости близнецов, для увеличения рождаемости детей арийской расы. Так вот этот зверский врач в 60-х годах посещал описываемый город в Бразилии с целью лечить жительниц этого поселения. Причастен ли он к теперешнему тотальному рождению близнецов, сказать невозможно, так как эта тайна ушла вместе с Менгелем в могилу.

Ещё одним экспериментом генетиков стало клонирование замороженной мыши, в таком состоянии она пробыла 16 лет. После ряда неудачных попыток, учёным все же удалось воссоздать клон этого несчастного животного, кто знает, может, благодаря подобным экспериментам, скоро у нас на планете появятся мамонты и динозавры?

быстрорастущие деревья ещё один генный эксперимент, этот вид растений способен достигать 27 метров в высоту всего лишь за шесть лет. Выведено такое дерево было не для красоты, а в целях получения нового, альтернативного вида топлива.

Вот сколько всего необычного получилось узнать учёным в области генетики, многие из этих открытий значительно повлияли на ход истории и жизни человечества. Пределу совершенства этой науки пока не видно, с интересом будем наблюдать за новыми генетическими исследованиями нашего тысячелетия.


Стало известно, что ученые из Университета Калифорнии в Сан-Франциско нашли ген, который отвечает за интеллект. А это позволит в будущем искусственно увеличивать разум человека в любом возрасте. И это лишь одно из множества последних открытий в генетике , каждое из которых имеет важнейшее значение для науки и Человечества.

Ген интеллекта

Как уже упоминалось выше, американские ученые из Калифорнии обнаружили белок с названием «клото» и ген KL-VS, который отвечает за его выработку. Последний тут же получил имя «ген интеллекта», ведь данный белок способен повысить показатели IQ человека сразу на 6 пунктов.

Более того, этот белок можно синтезировать искусственно, и не важно, какого возраста человек. Следовательно, в будущем ученые научатся научными методами делать людей умнее вне зависимости от их природных интеллектуальных данных.



Конечно, при помощи «клото» невозможно сделать из обычного человека гения. Но помочь людям с задержками интеллектуального развития, а также тем, кто страдает от болезни Альцгеймера, в будущем, возможно, и получится.

Болезнь Альцгеймера

Кстати, о болезни Альцгеймера. С момента ее описания в 1906 году ученые не могли достоверно выяснить природу данного заболевания, по каким причинам оно развивается у одних людей, а у других – нет. Но недавно появился существенный прорыв в изучении этой проблемы. Японские исследователи из Университета Осака обнаружили ген, который развивает болезнь Альцгеймера у подопытных мышей.

В рамках исследований был выявлен ген klc1, способствующий накоплению в тканях мозга бета-амилоидного белка, который и является основным фактором развития болезни Альцгеймера. Механизм этого процесса был известен давно, но раньше никто не мог объяснить его причину.



Опыты показали, что при блокировке гена klc1, количество скапливающегося в головном мозге бета-амилоидного белка снижается на 45%. Ученые надеются, что в будущем их исследования помогут в борьбе с болезнью Альцгеймера – опасным заболеванием, которым страдают десятки миллионов пожилых людей по всему миру.

Ген глупости

Оказывается, существует не только ген интеллекта, но и ген глупости. Во всяком случае, так считают ученые из Университета Эмори в Техасе. Они обнаружили генетическое отклонение RGS14, отключение которого позволяет заметно улучшить интеллектуальные способности подопытных мышей.

Выяснилось, что блокировка гена RGS14 делает более активной область CA2 в гиппокампе – области мозга, отвечающей за накопление новых знаний и сохранение воспоминаний. без этой генетической мутации стали лучше запоминать объекты и перемещаться по лабиринту, а также лучше адаптироваться к изменяющимся условиям внешней среды.



Ученые из Техаса надеются в будущем разработать препарат, который блокировал бы ген RGS14 у уже живущего человека. Это позволило бы дать людям невиданные ранее интеллектуальные возможности и познавательные способности. Но до реализации данной идеи нужно еще не одно десятилетие.

Ген ожирения

Оказывается, у ожирения также есть генетические причины. В разные годы ученые находили разные гены, способствующие появлению лишнего веса и большого количества жира в организме. Но «главным» из них на данный момент считается IRX3.



Выяснилось, что этот ген влияет на процент жира относительно общей массы. Во время лабораторных исследований, оказалось, что у мышей с поврежденным IRX3 процент жира в организме в два раза меньше, чем у остальных. И это притом, что их кормили одинаковым количеством высококалорийной пищи.



Дальнейшее изучение генетической мутации IRX3, а также механизмов ее воздействия на организм позволит создавать эффективные лекарства от ожирения и диабета.

Ген счастья

И главное, на наш взгляд, открытие генетиков из всех упомянутых в этом обзоре. Обнаруженный учеными из Лондонской школы здоровья, 5-HTTLPR называют «геном счастья». Ведь, оказывается, он отвечает за распространение гормона серотонин в нервных клетках.

Считается, что серотонин является одним из важнейших факторов, отвечающих за настроение человека, он заставляет нас радоваться или грустить, в зависимости от внешних условий. Те, у кого низкий уровень этого гормона, подвержены частым приступам плохого настроения и депрессий, склонны к тревожности и пессимизму.



Британские ученые выяснили, что так называемая «длинная» вариация гена 5-HTTLPR способствует лучшей доставке серотонина в головной мозг, что заставляет человека чувствовать себя в два раза счастливее, чем остальные. Эти выводы основаны на опросе и изучении генетических особенностей нескольких тысяч добровольцев. При этом самые лучшие показатели довольства жизнью оказались у тех людей, оба родителя которых также обладают «геном счастья».