Закись азота парниковый газ. Влияние парниковых газов. Свойства парниковых газов

Производственная деятельность человека влечет за собой вредные воздействия на атмосферу. Данный фактор уже стал банальностью и на него обращают внимание разве что специалисты в экологической сфере. Между тем вредные выбросы ставят все более острые вопросы перед организациями, занимающимися глобальными изменениями климата. В списке наиболее острых проблем на конференциях, посвященных экологии, регулярно фигурирует парниковый газ как один из самых опасных факторов влияния на атмосферу и биоту. Дело в том, что газообразные соединения этого типа не могут пропускать тепловые излучения, что способствует нагреву атмосферы. Существует несколько источников образования таких газов, среди которых и биологические явления. А теперь стоит подробнее ознакомиться с составом парниковых смесей.

Водяной пар как основной парниковый газ

Газы этого типа формируют порядка 60% от общего объема веществ, благодаря которым создается По мере роста показателей температуры Земли также увеличиваются испарение и общая концентрация в атмосфере. В то же время сохраняется прежний уровень влажности, что и способствует парниковому эффекту. Природная сущность, которой обладает парниковый газ в виде пара, несомненно, имеет положительные стороны в деле естественной регуляции атмосферного состава. Но есть и негативные последствия этого процесса. Дело в том, что на фоне повышения влажности происходит и наращивание облачной массы, которая отражает прямые лучи солнца. В результате имеет место уже антипарниковый эффект, при котором уменьшается интенсивность теплового излучения и, соответственно, прогрева атмосферы.

Углекислый газ

Среди главных источников выбросов этого типа можно назвать вулканические извержения, человеческую деятельность и процессы, происходящие в биосфере. К источникам антропогенного характера можно отнести сжигание топливных материалов и биомассы, промышленные процессы и другие факторы, приводящие к образованию углекислоты. Это тот самый парниковый газ, который активно участвует в процессах биоценоза. Он же является и самым долговечным с точки зрения пребывания в атмосфере. По некоторым сведениям, дальнейшее скапливание углекислоты в атмосферных слоях ограничено риском последствий не только для равновесия в биосфере, но и для существования человеческой цивилизации в целом. Именно такие представления являются основной мотивацией для выработки мер, противодействующих парниковому эффекту.

Метан

Сохраняется в атмосфере порядка 10 лет. Прежде считалось, что действие метана на стимуляцию парникового эффекта в 25 раз превышает углекислоту. Но последние научные исследования дали еще более пессимистичные результаты - оказалось, что потенциал воздействия этого газа был недооценен. Впрочем, ситуацию смягчает небольшой период, в ходе которого атмосфера сохраняет метан. Парниковый газ этого типа появляется в результате антропогенной деятельности. Это может быть рисоводство, пищеварительная ферментация, сведение лесных массивов и т. д. По некоторым исследованиям, интенсивный рост метановой концентрации имел место в первом тысячелетии нашей эры. Такие явления были связаны именно с расширением скотоводства и сельхозпроизводства, а также с выжиганием лесов. В последующие столетия уровень концентрации метана снижался, хотя в наши дни наблюдается обратная тенденция.

Озон

В составе парниковых газообразных смесей находятся не только опасные с точки зрения компоненты, но и благотворные части. К таким относится озон, защищающий Землю от ультрафиолетового света. Впрочем, и здесь не все однозначно. Ученые разделяют этот газ на две категории - тропосферный и стратосферный. Что касается первого, то он может представлять опасность из-за своей токсичности. Вместе с этим повышенное содержание тропосферных элементов способствует росту парникового эффекта. При этом стратосферный слой выступает основной защитой перед воздействиями вредных излучений. В регионах, где парниковый газ данного типа имеет повышенную концентрацию, наблюдают сильные воздействия на растительность, которые проявляются в угнетении фотосинтетического потенциала.

Противодействие парниковому эффекту

Существует несколько направлений, в которых ведется работа над методами сдерживания данного процесса. Среди основных мер выделяется применение инструментов регуляции взаимодействия накопителей и поглотителей парниковых газов. В частности, природоохранные соглашения на местном уровне способствуют активному развитию лесных хозяйств. Здесь же стоит отметить мероприятия по лесовозобновлению, которые уже в будущем позволят минимизировать парниковый эффект. Газ, выбрасываемый в атмосферу от производств, также поддается сокращению во многих отраслях. Для этого вводятся мероприятия по ограничению выбросов на транспорте, в производственных сферах, на электростанциях и т. д. С этой целью разрабатываются альтернативные методы переработки топлива и системы газовыведения. Например, в последнее время активно внедряется система рекуперации, благодаря которой предприятия оптимизируют процессы удаления своих отходов.

Заключение

В процессах образования парникового эффекта деятельность человека играет не самую большую роль. Это видно по доле объемов газа, которые вырабатываются антропогенными источниками. Однако именно эти вредные выбросы являются наиболее опасными для атмосферы. Поэтому экологические организации рассматривают парниковый газ как фактор негативного изменения климата. В итоге применяются средства, позволяющие сдерживать распространение и накопление вредных веществ, способствующих повышению риска глобального потепления. Причем борьба с вредными выбросами ведется в самых разных направлениях. Это касается не только заводов и предприятий, но и продукции, предназначенной для индивидуального использования.

Парниковыми газами называются газы, имеющие высокую прозрачность в видимом диапазоне и высокое поглощение в дальнем инфракрасном диапазоне. Наличие парниковых газов в атмосфере является основной причиной образования парникового эффекта, что, в свою очередь, приводит к существенному изменению климата на планете. В последнее время, на нашей планете парниковый эффект ощущается довольно остро, так как с каждым годом климат изменяется в сторону потепления. Явление парникового эффекта на планете подобно принципу обычной садовой теплице, в которой лучи солнца проходят сквозь прозрачную стенку и крышу, тем самым нагревая почву и увеличивая температуру воздуха в теплице. Благодаря конструкции теплицы, высокая температура воздуха в ней сохраняется. Тоже самое происходит и на Земле. Выбросы парниковых газов в атмосферу приводят к тому, что над планетой образуется некая оболочка, состоящая из веществ, способных пропускать солнечные лучи. Таким образом, данная оболочка способна удерживать тепло на планете, как в парнике.

Для выращивания растений эффект сохранения тепла является благоприятными условиями, а вот планете он может нанести непоправимый вред.

К парниковым газам, выбрасываемым в земную атмосферу, относятся следующие:

  • углекислый газ;
  • водяной пар;
  • метан;
  • озон;
  • фреоны;
  • иные газы (гидрофторуглероды, перфторуглероды, гексафторид серы и многие другие. Таких газов, которые также принимают участие в образовании парникового эффекта, насчитывается порядка 30 видов).

Все парниковые газы классифицируются на два типа согласно форме их образования:

  1. Естественные газы;
  2. Антропогенные вещества.

Первый тип говорит сам за себя. Образование таких газов происходит в результате естественных природных процессов, которые протекают на земле. К ним относятся, например, водяной пар, когда вода из рек и водоемов испаряется под воздействием солнечных лучей. Поскольку данные процессы природные, повлиять на их течение невозможно. Кроме этого, они не наносят видимого вреда экологии Земли.

Антропогенные вещества, в отличие от естественных газов, вырабатываются в ходе человеческой деятельности. В данном случае, выбросы парниковых газов наносят непоправимый ущерб атмосфере и, как следствие, экологии на планете. Поскольку образование антропогенных веществ является следствием деятельности людей, то, в данном случае, объем выбросов парниковых газов можно контролировать, проводя определенные мероприятия, направленные на улучшение экологии на Земле.

Стоит отметить, что источников образования вредных парниковых газов существует огромное множество. Однако, по мнению специалистов, которые занимаются контролем их выбросов, наибольшее количество антропогенных веществ в атмосферу выбрасывается в результате переработки и потребления ископаемого топлива. На долю этой категории приходится порядка 82-88% образования всех парниковых газов. Переработка топлива осуществляется на многих предприятиях, для производственного цикла которых необходимо производить нагрев какого-либо вида сырья. К этой категории также относятся и транспортные средства, работающие на двигателях внутреннего сгорания, выбрасывающих в атмосферу выхлопные газы.

Второе место по количеству образования вредных газов, выбрасываемых в атмосферу, принадлежит процессы сжигания биомассы, которая образуется в результате вырубки лесов, особенно тропических. Дело в том, что данный процесс неразрывно связан с образованием углекислого газа в больших количествах. В результате этой деятельности атмосфера на 10-12% пополняется парниковыми газами.

Остальные несколько процентов антропогенных веществ образуются в результате деятельности промышленных предприятий, занимающихся производством металла цемента, полимерных и других материалов. На долю таких производств приходится около 2% от всех остальных загрязнений.

Таким образом, эволюция человека приводит к существенному ухудшению экологии на планете и значительному вреду окружающей среде. В настоящее время появляется все больше законодательных актов и технологий, направленных на сохранение экологии и уменьшение выбросов парниковых газов. Так, в 1997 году в Японии был принят Киотский протокол, который обязывает все подписавшие его страны стабилизировать или уменьшить выбросы парниковых газов. Положения протокола действуют до 2020 года. В соответствии с данным документом все страны ЕС должны снизить количество выбрасываемых в атмосферу парниковых газов минимум на 8%, США на 7%, Япония на 6%, Россия и Украина - стабилизировать промышленное производство и не допустить их увеличения. Уменьшение выбросов парниковых газов существенно улучшит экологическую ситуацию на планете и не допустит преждевременного глобального потепления.

Так, существуют определенные мероприятия, выполнение которых позволит это сделать. Данные мероприятия также прописаны в Киотском протоколе. К ним относятся:

  1. Улучшение промышленных предприятий, а также повышение их эффективности. Данный пункт является основным на пути борьбы с ростом выбрасываемых парниковых газов.
  2. Озеленение планеты. Страны, которые подписали документ, обязаны на своей территории увеличивать объемы лесного хозяйства, а также стимулировать лесовосстановление;
  3. Стимуляция любых изысканий в области возобновляемых энергетических источников и технологий поглощения углекислого газа;
  4. Предоставление льгот и послабление промышленным налогоплательщикам, которые активно переходят на экологически чистые технологии, а также стимулируют лесовосстановление и осуществляют другие мероприятия, направленные на улучшение экологической ситуации на планете;
  5. Ограничение выбросов выхлопных транспортных газов, которое заключается в стимулировании производства электромобилей, а также переход на более экологическое топливо.

Кроме этого, дополнительными мероприятиями по снижению выбросов парниковых газов в атмосферу и улучшении экологической ситуации являются:

  1. Исключение неэффективного использования электроэнергии;
  2. Повышение коэффициента полезного действия природных ресурсов;
  3. Своевременное предотвращение лесных пожаров;
  4. Внедрение применения возобновляемых или неуглеродоводородных энергетических источников;
  5. Снижение нерационального использования водных ресурсов;

При сжигании ископаемого топлива (угля, нефти, газа) в атмосферу выбрасывается диоксид углерода и другие газы. Эти выбросы способствуют повышению температуры на Земле («парниковый эффект»). Повышение температуры приводит к повышению уровня моря, возникновению мощных ураганов и другим проблемам, связанным с изменениями климата. Если все жители планеты будут меньше пользоваться автомобилями, экономить электроэнергию и создавать меньше отходов, человечество уменьшит его «углеродистый след», что поможет в борьбе с глобальным потеплением.

Шаги

Углеродистый след

    Вычислите ваш «углеродистый след». Углеродистый след – это количество углерода, которое выбрасывается в атмосферу благодаря жизнедеятельности определенного человека. Если ваша жизнедеятельность основана на большом количестве сжигаемого топлива, то ваш «след» весьма большой. Например, «след» человека, пользующегося велосипедом, меньше «следа» человека, который ездит на автомобиле.

    Если вы беспокоитесь о снижении выбросов парниковых газов, измените ваши привычки. Сосредоточьтесь на тех аспектах вашей жизнедеятельности, которые вы можете изменить (лучше навсегда). Даже небольшие изменения образа жизни могут иметь важное значение для экологии.

    Помните, что изменение образа жизни является только первым шагом. Если вы хотите бороться с выбросами парниковых газов на глобальном уровне, необходимо предпринимать меры, чтобы заставить транснациональные корпорации сократить выбросы. Исследования показывают, что только 90 компаний несут ответственность за две трети выбросов парниковых газов. Ищите способы глобальной борьбы с парниковым эффектом.

Транспорт

    Реже пользуйтесь автомобилем. Автомобильные выхлопы являются основной причиной глобального потепления. Производство машин и строительство дорог для них, производство топлива и, конечно, сжигание этого топлива – это все вносит вклад в глобальное потепление. Мы не призываем вас вообще отказаться от поездок на автомобиле (это не всегда практично), но вы можете реже пользоваться автомобилем, чтобы снизить выбросы парниковых газов.

    • Вместо ежедневной поездки в продуктовый магазин на автомобиле, ездите туда раз в неделю и покупайте все необходимое сразу на неделю.
    • Пользуйтесь одним автомобилем с вашими соседями или коллегами для поездок в школу или на работу.
    • Если вам нужно куда-то съездить, подумайте, можно ли туда попасть без использования вашего автомобиля.
  1. Пользуйтесь автобусом, метро или электричкой. Эти транспортные средства также влияют на парниковый эффект, но они перевозят сразу множество людей, поэтому более эффективны, чем личные автомобили. Ознакомьтесь с маршрутами и расписаниями движения автобусов, метро и электричек в вашем городе или регионе и пользуйтесь исключительно общественным транспортом хотя бы раз в неделю (постепенно увеличивайте количество таких дней).

    • Если в вашем городе или регионе ненадежная система общественного транспорта, поднимите этот вопрос в мэрии или региональных органах власти.
    • Если другие жители вашего города (региона) разделяют вашу озабоченность, вы можете решить эту проблему совместными усилиями.
  2. Чаще пользуйтесь велосипедом или ходите пешком – это полезно для здоровья. Если вам нужно съездить на расстояние всего нескольких километров, лучше пройдитесь пешком или воспользуйтесь велосипедом. Конечно, это займет больше времени, но в пути вы можете обдумывать разные вопросы или наслаждаться красотой окружающей вас природы.

    Содержите автомобиль в хорошем состоянии. В противном случае он будет производить больше выхлопных газов. Проходите контроль токсичности выхлопных газов раз в год или вовремя ремонтируйте ваш автомобиль. Вот другие способы содержать автомобиль в хорошем состоянии и уменьшить его воздействие на окружающую среду:

    • Заполняйте бензобак ранним утром или поздним вечером (когда на улице прохладно). Таким образом, днем ваш автомобиль будет производить меньше выхлопных газов.
    • Используйте энергосберегающие моторные масла.
    • Выключайте двигатель, когда автомобиль стоит в пробке, на «красном свете» и в других подобных ситуациях.
    • Убедитесь, что давление в шинах вашего автомобиля имеет рекомендуемое значение.

Энергия

  1. Выключайте свет и электроприборы. При производстве электричества выбрасывается большое количество парниковых газов. Включайте свет и электроприборы как можно реже, чтобы уменьшить ваш углеродистый след.

    • В течение дня пользуйтесь естественным освещением; для этого раздвиньте занавески или откройте жалюзи.
    • Выключите телевизор, если вы не смотрите его.
    • Выключите компьютер, если вы не работаете на нем.
  2. Отключайте электроприборы от розетки, так как в таком состоянии (даже будучи выключенными) они все еще потребляют некоторое количество электроэнергии (например, зарядное устройство потребляет электроэнергию, даже если к нему не подключен телефон).

    Пользуйтесь энергосберегающей крупной бытовой техникой. Крупная бытовая техника потребляет немало электроэнергии. Если вы используете устаревшие приборы, замените их энергосберегающими моделями. Вы сэкономите деньги (на оплату электроэнергии) и уменьшите ваш «углеродистый след». Подумайте о замене следующей бытовой техники:

    • Холодильник
    • Электроплита
    • Микроволновая печь
    • Посудомоечная машина
    • Стиральная машина
    • Сушилка
    • Кондиционер
  3. Задумайтесь об использовании кондиционера – это еще один прибор, потребляющий немалое количество электроэнергии. Поэтому реже пользуйтесь кондиционером, замените его новой моделью и выполните следующие действия:

  4. Урежьте использование горячей воды. На нагревание воды уходит много энергии. Принимайте короткий душ и реже принимайте ванну (при приеме ванны расходуется больше воды, чем при приеме душа).

    • Вы также можете ограничить использование горячей воды, настроив водонагреватель на 49˚С, чтобы вода не была слишком горячей.
    • Стирайте одежду в холодной воде (это лучше для вашей одежды).

Потребление

  1. Ешьте меньше мяса. Если вы не хотите быть вегетарианцем , попытайтесь отказаться от потребления мяса в течение нескольких дней в неделю (или по крайней мере один раз в день). Для того, чтобы вырастить животное, обработать мясо и сохранить его, требуется огромное количество энергоресурсов.

    • Покупайте мясо, произведенное местными предприятиями или фермерами.
    • Подумайте о разведении кур , чтобы получать мясо и яйца.
  2. Готовьте еду сами вместо покупки полуфабрикатов или готовых блюд, на производство которых требуется немалое количество энергии. Например, если вы хотите попробовать томатный соус, приготовьте его из свежих помидоров и чеснока вместо того, чтобы покупать консервированный соус. Это лучше для окружающей среды и вашего здоровья.

    • Вы можете даже выращивать помидоры и чеснок .
  3. Производите некоторые продукты самостоятельно. Массовое производство, упаковка и доставка товаров связана с выбросами в атмосферу, поэтому производите некоторые продукты самостоятельно (мы не рассчитываем, что вы будете производить все то, что вам нужно, но есть некоторые продукты, которые могут быть сделаны практически любым человеком).

    • Делайте дезодорант.
  4. Покупайте товары, производимые местными предприятиями. Если что-то сделано в вашем городе, то при транспортировке этого товара в атмосферу будет выброшено минимальное количество парниковых газов. Покупая продукты питания и другие товары, сделанные в вашем городе (или регионе), вы сильно уменьшаете ваш «углеродистый след». Вот несколько способов сделать это:

    • Покупайте продукты питания на рынках.
    • Сократите покупки в интернет-магазинах, так как такие товары доставляются автомобилями.
    • Поддерживайте местных производителей.

Метан - наиболее важный представитель органических веществ в атмосфере. Его концентрация существенно превышает концентрацию остальных органических соединений. В 60-е и 70-е годы количество метана в атмосфере возрастало со скоростью 1% в год, и это объяснялось хозяйственной деятельностью человечества.

Увеличение содержания метана в атмосфере способствует усилению парникового эффекта, так как метан интенсивно поглощает тепловое излучение Земли в инфракрасной области спектра на длине волны 7,66 мкм. Метан занимает второе место после углекислого газа по эффективности поглощения теплового излучения Земли. Вклад метана в создание парникового эффекта составляет примерно 30% от величины, принятой для углекислого газа. С ростом содержания метана изменяются химические процессы в атмосфере, что может привести к ухудшению экологической ситуации на Земле. Естественно возникает вопрос об управлении химическими и физическими процессами, в которых принимает участие метан. Если молекулы метана попадают в атмосферу, то они вовлекаются в процессы переноса и вступают в химические реакции, которые хорошо известны как качественно, так и количественно. Управление процессами непосредственно в атмосфере в глобальном масштабе практически исключено. До настоящего времени направленное воздействие на атмосферные процессы удавалось осуществить только путём изменения мощности антропогенных источников. Поэтому важно понимать природу естественных и антропогенных источников метана и оценивать их мощность с достаточной степенью достоверности.

История обнаружения атмосферного метана. История обнаружения атмосферного метана коротка. Присутствие его в атмосфере открыто сравнительно недавно, в 1947 году. Концентрация метана невелика. В атмосферной химии для концентрации обычно используют долевые единицы, что связано с тем, что количество примесных молекул, таких, как метан, невелико. Часто концентрации выражают в частях на миллион или миллиард. Например, если концентрация примеси равна одной части на миллион, то это означает, что в одном моле воздуха присутствует 1(Г 6 молей примеси. Для удобства вводят обозначения типа ррт, что означает количество частей на миллион.

Классификация метана по его происхождению. Источники метана разнообразны. Метан называется биогенным, если он возникает в результате химической трансформации органического вещества. Если метан образуется в результате деятельности бактерий, то он называется бактериальным (или микробным) метаном. Если его возникновение обязано термохимическим процессам, то он называется термогенным. Бактериальный метан образуется в донных отложениях болот и других водоемов, в результате процессов пищеварения в желудках насекомых и животных (преимущественно жвачных). Термогенный метан возникает в осадочных породах при их погружении на глубины 3--10 км, где осадочные породы подвергаются химической трансформации в условиях высоких температур и давлений. Метан, возникший в результате химических реакций неорганических соединений, называется абиогенным. Он образуется обычно на больших глубинах в мантии земли.

Общее содержание метана в атмосфере и его концентрация. В настоящее время концентрация атмосферного метана составляет 1,8 ppm. Общее количество метана в атмосфере оценивают в пределах 4600--5000 Тг (Тг = 1012 г). В южном полушарии концентрация метана несколько ниже, чем в северном полушарии. Такое различие обычно связывают с меньшей мощностью источников метана в южном полушарии: считается, что основные источники метана расположены на континентах, а океаны не вносят заметного вклада в глобальный поток метана. Время жизни метана в атмосфере 8-12 лет.

Метан находится в атмосфере в основном в приземном слое, который называется тропосферой и толщина которого составляет 11-15 км. Концентрация метана мало зависит от высоты в интервале от поверхности Земли до тропопаузы, что обусловлено большой скоростью перемешивания по высоте в пределах 0-12 км (1 месяц) в сравнении со временем жизни метана в атмосфере.

Изменение концентрации метана во времени.

Изменение концентрации метана в атмосфере Земли примечательно тем, что позволяет наглядно представить себе характер и масштаб влияния человеческой деятельности на глобальные процессы. Концентрация метана в 70-е годы увеличивалась в атмосфере со скоростью 0,8--1,2% в год, что эквивалентно увеличению концентрации на 16,5 ppbv (ppbv -- одна часть на миллиард) в год, а прирост его массы в атмосфере составлял 45 Тг/год. Возникает вопрос, всегда ли было так, что концентрация атмосферного метана ежегодно возрастала. Оказывается, можно проследить изменения в концентрации метана на протяжении 150 тысяч лет и более. С этой целью отбирают керны в материковых льдах Антарктиды или Гренландии. В частности, большое число данных получено на российской станции "Восток" в Антарктиде. Лед в кернах имеет разный возраст: чем глубже он расположен, тем он старше. Состав воздуха в пустотах льда на различной глубине соответствует составу атмосферы в момент образования льда.

Изменение концентрации метана в атмосфере Земли за последние 140 тыс. лет представлены на рис. 1. Кривая осадков характеризует оледенения: мало осадков - оледенение, много осадков - потепление. Из рис. 1 видно, что во время оледенений концентрация метана падала и иногда достигала рекордно низких значений (например, 0,35 ppm). Важно отметить, что концентрация метана до новой эры никогда не превышала 0,7 ppm. Естественно, что до новой эры интенсивность хозяйственной деятельности человечества была незначительной и поэтому наблюдаемая концентрация метана обеспечивалась только естественными факторами.

Рис. 1. Зависимость концентрации метана в атмосфере Земли (1) и зависимость осадков от времени, отн. ед. (2) 22 Данные взяты из Соросовского Образовательного журнала, том 6, № 3,. 2000.


Рис. 2. Изменения содержания метана в атмосфере и населения Земли во времени 33 см. там же

Анализы показывают, что от Рождества Христова вплоть до XVII века концентрация метана в атмосфере Земли была практически постоянной и составляла примерно 0,7 ppm Затем концентрация метана стала повышаться и одновременно начался интенсивный рост населения Земли (рис. 2) На рис. 2 видно, что за последние 300 лет концентрация метана возросла на 1,1 ppm. Можно полагать, что этот прирост обусловлен деятельностью человечества. Из данных рис. 2 следует, что в период с начала 60-х годов по настоящее время произошло удвоение прироста концентрации метана, составившее примерно 0,55 ppm и за это же время удвоилось население земного шара.

Интересное событие произошло в 80-90-е годы: прирост концентрации метана начал падать. Причины этого не вполне ясны Высказывалось робкое предположение, что это связано с тем, что Россия смогла починить свои газопроводы и это привело к остановке в росте концентрации метана. Однако простые оценки показывают , что Россия не имеет к этому никакого отношения и что, скорее всего, включились некоторые факторы пока неизвестной природы. Более детальное рассмотрение указанных явлений требует знаний о механизмах поступления метана в атмосферу и о процессах вывода метана из атмосферы.

Стоки метана.

Рассмотрение поведения метана в атмосфере начнем с процессов исчезновения метана. Дело в том, что процессы вывода метана из атмосферы известны в количественном отношении гораздо полнее, чем процессы, обеспечивающие поступление метана в атмосферу. Интенсивность процессов стока метана должна быть примерно равной интенсивности источников метана, что

позволяет более надежно судить о мощности источников метана в атмосфере.

Молекула метана довольно устойчива, и ее нелегко вывести из атмосферы. Метан малорастворим в воде (30 см 3 газа растворяется в одном литре воды), и удаление его из атмосферы с помощью осадков не происходит. Для реального удаления из атмосферы метан необходимо переводить в нелетучие соединения или другие газообразные соединения.

Метан, как и многие другие примеси, исчезает из атмосферы, в основном в реакции с радикалом ОН:

ОН + СН 4 = Н 2 О + СНз

Если концентрация метана в атмосфере не растет, то это означает, что скорость поступления метана в атмосферу равна скорости его вывода. Поэтому количественные характеристики этой реакции между метаном и радикалом ОН чрезвычайно важны, так как ошибка в 25% приведет к ошибке примерно в 25% в расчете мощности источников метана. Параметры этой реакции определялись многократно, и тем не менее последние данные показывают, что 10-15 лет назад скорость реакции определялась завышенной примерно на 25%. Это означает, что поток метана в атмосферу с поверхности Земли составляет примерно 400, а не 500 Тг/год, как считалось ранее. Возникает естественный вопрос об источнике радикалов ОН. Необходимо отметить, что радикал ОН -- одна из наиболее реакционноспособных частиц в химических процессах. Источником радикала ОН в тропосфере является тропосферный озон (Од). Под действием ультрафиолетового света с длиной волны короче 310 нм молекулы тропосферного озона разрушаются с образованием молекулы кислорода и чрезвычайно реакционноспособного атома кислорода в возбужденном электронном состоянии (0(1 D)):

0 3 +hv (310 нм и короче) = О 2 + 0(1 D)

Атомы кислорода отрывают один атом водорода от воды и получается два радикала ОН:

0(1 D) + Н 2 О = 20Н

Итак, реакции в атмосфере, приводящие к выводу метана, таковы:

ОН + СН 4 = Н 2 0 + СНз,

СНз + О 2 СНзО 2 ,

СНзО 2 + NO = СНзО + NO 2 ,

СНзО + 0 2 = СН 2 О + НО 2 ,

HO 2 + NO = OH + NO 2 ,

2,

СН 4 + 40 2 = СН 2 О + Н 2 0 + 20з

Таким образом, в результате многоступенчатого процесса образуются по одной молекуле формальдегида и воды и две молекулы озона. NO и NO 2 (NO х) всегда присутствуют в атмосфере в количествах, достаточных для протекания реакции с их участием.

Из приведенных реакций видно образование нестабильных валентно-ненасыщенных частиц, таких, как СНзО 2 или НО 2 . Эти частицы играют важную роль в процессах в атмосфере. Формально их образование можно представить в процессах отрыва атома водорода от стабильных молекул метилгидроперекиси и перекиси водорода соответственно. Присутствие свободной валентности приводит к высокой реакционной способности, так как эти частицы стремятся к образованию стабильных связей и насыщению валентностей.

Разложение метана до конечных продуктов еще не закончено. Образующиеся молекулы формальдегида начинают участвовать в следующих трех реакциях, которые дают начало новым циклам:

СН 2 О + hv = Н 2 + СО,

СН 2 О + hv = Н + НСО,

СН 2 О + ОН = НСО + Н 2 О

В среднем для атмосферы вероятности протекания этих процессов относятся как 0,5: 0,25: 0,25 соответственно, а вторая и третья реакции дают начало следующим циклам, протекающим в присутствии NO х:

СН 2 О + hv = Н + НСО,

Н + О 2 НО 2 ,

НСО + 0 2 = СО +НО 2 ,

2,

СН 2 О + 40 2 + hv = СО + 20з + 20Н

В результате этого цикла возникают две молекулы озона и два радикала ОН. Таким образом, метан в присутствии NO х претерпевает конверсию в окислитель, каким является озон. Реакция формальдегида с радикалом ОН также приводит к образованию озона:

СН 2 О + ОН = НСО + Н 2 О,

НСО + О 2 = СО +НО 2,

H0 2 + NO = OH + N0 2 ,

NO 2 + hv = NO + О,

0 + 0 2 = 0з,

СН 2 О + 20 2 + hv = СО + Оз + Н 2 0

СО + ОН = СО 2 + Н,

Н + О 2 = НО 2 ,

HO 2 + NO = OH+NO 2 ,

NO 2 + hv = NO + О,

0 + 0 2 = 0з,

СО + 20 2 + hv = СО 2 + Оз

В итоге вместо одной исчезнувшей в атмосфере молекулы метана возникает 3,5 молекулы озона и 0,5 радикала ОН.

Химический сток в атмосфере -- это основной канал вывода метана из атмосферы. Из других стоков некоторое значение имеют поглощение метана почвенными бактериями и уход в стратосферу. Оба стока вносят вклад менее 10% в общий сток метана.

Источники выделения метана

Метан попадает в атмосферу как из естественных, так и из антропогенных источников. Мощность антропогенных источников в настоящее время существенно превышает мощность естественных. К естественным источникам метана относятся болота, тундра, водоемы, насекомые (главным образом термиты), метангидраты, геохимические процессы. К антропогенным - рисовые поля, шахты, животные, потери при добыче газа и нефти, горение биомассы, свалки. Мощность этих источников приведена в табл. 1.

Таблица 1. Мощность естественных и антропогенных источников метана (в Тг/год) Данные взяты из Соросовского Образовательного журнала, том 6, № 3,. 2000.

Из данных табл. 1 видно, что болота, рисовые поля и животные вносят доминирующий вклад в образование общего потока в атмосферу. Природа образования метана в таких источниках, как болота, озера, рисовые поля, жвачные животные, насекомые, свалки, примерно одинакова - ферментативная переработка клетчатки.

Интенсивность выделения метана из болот меняется в широких пределах. Эмиссия метана от западносибирских болот, которые являются достаточно типичным представителем северных болот, определенная с применением методов газовой хроматографии, составляет примерно 9 мг метана в ч/м 2 . В среднем эмиссия метана из сибирских болот может достигать 20 Тг/год, что довольно много в сопоставлении с общим потоком метана от болот (50--70 Тг). Нужно сказать, что точность определения эмиссии метана от болот затруднена большим разбросом величин эмиссии при измерении даже на близко расположенных участках. Например, величина эмиссии метана в западносибирских болотах колебалась в интервале от 0,1 до 40 мг/(м 2 ч). Большой поток метана от рисовых полей обусловлен резким ускорением транспорта метана внутри полостей в стеблях риса, так как диффузия метана происходит в воздушной среде, а не в воде. Поток метана с рисовых полей достигает в среднем 2,3 мг/(м 2 ч).

Количество крупного рогатого скота в мире -- около 1,5 млрд голов. Одна корова производит в сутки около 250 л чистого метана. Этого количества метана хватит, чтобы вскипятить 20 л воды. В развитых странах на свалки вывозится примерно 1,8 кг мусора в день в расчете на одного человека, в России 0,6 кг соответственно. Примерно 10% этой массы может конвертироваться в метан. Следовательно, в России производится 60 г метана в сутки в расчете на одного человека.

Шахтный метан возникает в процессе трансформации органических остатков в уголь под влиянием высоких давлений и температур. Можно считать, что в глубинах земли происходит пиролиз органических веществ. Растительные остатки содержат большое количество лигнина, в структуре которого имеется много метильных групп. В ходе термической переработки происходит освобождение метильных радикалов, которые затем отрывают атом водорода от органических молекул и превращаются в метан. Добыча 1 т угля сопровождается выделением 13 м 3 чистого метана.

Аналогичный механизм образования метана наблюдается и при горении биомассы. Основной источник метана, выделяющегося при горении биомассы, находится в Африке, где широко практикуется сжигание соломы при подготовке почвы для нового урожая. Использование дерева для приготовления пищи и отопления дает незначительный вклад. Величины потоков метана приведены в табл. 1. Видно, что страны бывшего СССР производят около 5--15% от общего потока метана в атмосферу. В качестве источника не включены насекомые, так как количество термитов на территории бывшего СССР было крайне незначительным. Гидраты метана также не включены, так как оценка запасов гидратов метана в мире и странах бывшего СССР пока очень приблизительна. Следует отметить, что и оценка потока метана от гидратов метана приводит пока к незначительной величине.

Вывод: Роль метана в экологических процессах исключительно велика. В настоящее время насущной задачей для многих регионов земного шара, и в том числе для России, являются инвентаризация существующих источников метана, выявление и прогнозирование появления новых источников. Это важно ещё и потому, что при экспериментальных измерениях мощностей отдельных источников выявлена значительно меньшая мощность, чем предполагалось. Потому не исключена возможность, что мы столкнёмся в будущем с проблемой дефицита метана из традиционных источников, который удастся ликвидировать только на основе изучения нетрадиционных источников.

Парниковый эффект в атмосфере нашей планеты вызван тем, что поток энергии в инфракрасном диапазоне спектра, поднимающийся от поверхности Земли, поглощается молекулами газов атмосферы, и излучается обратно в разные стороны, в результате половина поглощенной молекулами парниковых газов энергии возвращается обратно к поверхности Земли, вызывая её разогрев. Следует отметить, что парниковый эффект - это естественное атмосферное явление (рис.5). Если бы на Земле вообще не было парникового эффекта, то средняя температура на нашей планеты была бы около -21°С, а так, благодаря парниковым газам, она составляет +14°С. Поэтому, чисто теоретически, деятельность человека, сопряжённая с выбросом парниковых газов в атмосферу Земли, должна приводить к дальнейшему разогреву планеты. Основными парниковыми газами, в порядке их оцениваемого воздействия на тепловой баланс Земли, являются водяной пар (36-70%), углекислый газ (9-26%), метан (4-9%), галоуглероды, оксид азота.

Рис.

Угольные электростанции, заводские трубы, автомобильные выхлопы и другие созданные человечеством источники загрязнения вместе выбрасывают в атмосферу около 22 миллиардов тонн углекислого газа и других парниковых газов в год. Животноводство, применение удобрений, сжигание угля и другие источники дают около 250 миллионов тонн метана в год. Около половины всех парниковых газов, выброшенных человечеством, осталось в атмосфере. Около трёх четвертей всех антропогенных выбросов парниковых газов за последние 20 лет вызваны использованием нефти, природного газа и угля (рис.6). Большая часть остального вызвана изменениями ландшафта, в первую очередь вырубкой лесов.

Рис.

Водяной пар - самый главный на сегодня парниковый газ. Однако водяной пар участвует и во множестве других процессов, что делает его роль далеко неоднозначной в разных условиях.

Прежде всего, при испарении с поверхности Земли и дальнейшей конденсации в атмосфере, в нижние слои атмосферы (тропосферу) благодаря конвекции переносится до 40% от всего тепла, поступающего в атмосферу. Таким образом, водяной пар при испарении несколько понижает температуру поверхности. Но выделившееся в результате конденсации в атмосфере тепло идет на ее разогрев, и в дальнейшем, на разогрев и самой поверхности Земли.

Но после конденсации водяного пара образуются водяные капельки либо кристаллики льда, которые интенсивно участвуют в процессах рассеяния солнечного света, отражая часть солнечной энергии назад в космос. Облака, как раз представляющие из себя скопления этих капелек и кристалликов, увеличивают долю солнечной энергии (альбедо), отражаемой самой атмосферой обратно в космос (а дальше осадки из облаков могут выпасть в виде снега, увеличивая альбедо поверхности).

Однако у водяного пара, даже сконденсированного в капельки и кристаллики, все равно остаются мощные полосы поглощения в инфракрасной области спектра, а значит роль тех же облаков далеко не однозначна. Двойственность эта особенно заметна в следующих крайних случаях - при покрытии облаками неба в солнечную летнюю погоду температура на поверхности снижается, а если то же самое происходит зимней ночью, то наоборот, повышается. На окончательный результат влияет и положение облаков - на низких высотах мощная облачность отражает много солнечной энергии, и баланс может быть в данном случае в пользу антипарникового эффекта, а вот на больших высотах, разреженные перистые облака пропускают довольно много солнечной энергии вниз, но даже разреженные облака являются почти непреодолимы препятствием для инфракрасного излучения и, и тут можно говорить о преобладании парникового эффекта.

Еще одна особенность водяного пара - влажная атмосфера в некоторой степени способствует связыванию другого парникового газа - углекислого, и переносу его дождевыми осадками к поверхности Земли, где он в результате дальнейших процессов может быть израсходован в процессах образования карбонатов и горючих полезных ископаемых.

Человеческая деятельность очень слабо непосредственно влияет на содержание водяного пара в атмосфере - только лишь за счет роста площади орошаемых земель, изменения площади болот и работы энергетики, что на фоне испарения со всей водной поверхности Земли и вулканической деятельности ничтожно мало. Из-за этого довольно часто на нем мало акцентируется внимание при рассмотрении проблемы парникового эффекта.

Однако косвенное влияние на содержание водяного пара может быть очень велико, за счет обратных связей между содержанием водяного пара в атмосфере и потеплением, вызванном другими парниковыми газами, что мы сейчас и рассмотрим.

Известно, что при увеличении температуры увеличивается и испарение водяного пара, и на каждые 10 °С возможное содержание водяного пара в воздухе почти удваивается. Например, при 0 °С давление насыщенного пара составляет около 6 мб, при +10 °С - 12 мб, а при +20 °С - 23 мб.

Видно, что содержание водяного пара сильно зависит от температуры, и при понижении ее по каким-либо причинам, во-первых, понижается сам парниковый эффект водяного пара (благодаря уменьшившемуся содержанию), а во-вторых, происходит конденсация водяного пара, которая конечно, сильно тормозит понижение температуры за счет выделения конденсационного тепла, но зато уже после конденсации увеличивается отражение солнечной энергии, как самой атмосферы (рассеяние на капельках и кристаллах льда), так и поверхности (выпадение снега), что дополнительно понижает температуру.

При повышении температуры содержание водяного пара в атмосфере растет, его парниковый эффект увеличивается, что усиливает первоначальное повышение температуры. В принципе, растет и облачность (больше водяного пара попадает в относительно холодные области), однако крайне слабо - по данным И. Мохова порядка 0,4% на градус потепления, что не может сильно повлиять на рост отражения солнечной энергии.

Углекислый газ - второй по вкладу в парниковый эффект на сегодня, не вымораживается при понижении температуры, и продолжает создавать парниковый эффект даже при самых низких температурах, возможных в земных условиях. Вероятно, именно благодаря постепенному накоплению углекислого газа в атмосфере вследствии вулканической деятельности, Земля смогла выйти из состояния мощнейших оледенений (когда даже на экватор был покрыт мощнейшим слоем льда), в которые она попадала в начале и конце протерозоя.

Углекислый газ вовлечен в мощный круговорот углерода в системе литосфера-гидросфера-атмосфера, и изменение земного климата связывают прежде всего с изменением баланса его поступления в атмосферу и выведения из нее.

Благодаря относительно высокой растворимости углекислого газа в воде, содержание углекислого газа в гидросфере (прежде всего океаны) сейчас составляет 4х104 Гт (гигатонн) углерода (отсюда и далее приводятся данные по СО2 в пересчете на углерод), включая глубинные слои (Путвинский, 1998). В атмосфере в настоящее время содержится около 7,5х102 Гт углерода (Алексеев и др., 1999). Небольшим содержание СО2 в атмосфере было далеко не всегда - так в архее (около 3,5 млрд. лет назад) атмосфера состояла почти на 85-90% из углекислого газа, при существенно большем давлении и температуре (Сорохтин, Ушаков, 1997). Однако поступление значительных масс воды на поверхность Земли в результате дегазации недр, а также возникновение жизни обеспечило связывание почти всего атмосферного и значительной части растворенного в воде углекислого газа в виде карбонатов (в литосфере хранится около 5,5х107 Гт углерода (доклад МГЭИК, 2000)). Также углекислый газ стал преобразовываться живыми организмами в различные формы горючих полезных ископаемых. Кроме того, связывание части углекислого газа произошло и за счет накопления биомассы, общие запасы углерода в которой сравнимы с запасами в атмосфере, а учитывая еще и почвы - превышает в несколько раз.

Однако, нас прежде всего интересуют потоки, обеспечивающие поступление углекислого газа в атмосферу, и выводящие его из нее. Литосфера сейчас обеспечивает весьма небольшой поток углекислого газа, поступающего в атмосферу прежде всего благодаря вулканической деятельности - около 0.1 Гт углерода в год (Путвинский, 1998). Значительно большие потоки наблюдаются в системах океан (вместе с обитающими там организмами) - атмосфера, и наземная биота - атмосфера. В океан ежегодно поступает из атмосферы около 92 Гт углерода и 90 Гт возвращается обратно в атмосферу (Путвинский, 1998). Таким образом, океаном ежегодно дополнительно изымается из атмосферы около 2 Гт углерода. В то же время в процессах дыхания и разложения наземных умерших живых существ в атмосферу поступает около 100 Гт углерода в год. В процессах фотосинтеза наземной растительностью изымается из атмосферы тоже около 100 Гт углерода (Путвинский, 1998). Как мы видим, механизм поступления и изъятия углерода из атмосферы достаточно сбалансирован, обеспечивая приблизительно равные потоки. Современная жизнедеятельность человека включает в этот механизм все увеличивающийся дополнительный поток углерода в атмосферу за счет сжигания горючих ископаемых (нефть, газ, уголь и пр.) - по данным, например, за период 1989-99 гг., в среднем около 6,3 Гт в год. Также поток углерода в атмосферу увеличивается и за счет вырубки и частичного сжигания лесов - до 1,7 Гт в год (доклад МГЭИК, 2000), при этом прирост биомассы, способствующий поглощению СО2 составляет всего около 0,2 Гт в год вместо почти 2 Гт в год. Даже учитывая возможность поглощения около 2 Гт дополнительного углерода океаном, все равно остается довольно значимый дополнительный поток (к настоящему времени около 6 Гт в год), увеличивающий содержание углекислого газа в атмосфере. Кроме того, поглощение углекислого газа оканом уже в ближайшем будущем может уменьшится, и даже возможен обратный процесс - выделение углекислого газа из Мирового океана. Это связано с понижением растворимости углекислого газа при повышении температуры воды - так, например, при повышении температуры воды всего с 5 до 10 °С, коэффициент растворимости углекислого газа в ней уменьшается приблизительно с 1,4 до 1,2.

Итак, поток углекислого газа в атмосферу, вызываемый хозяйственной деятельностью не велик по сравнению с некоторыми естественными потоками, однако его нескоменсированность приводит к постепенному накоплению СО2 в атмосфере, что разрушает баланс поступления и изъятия СО2, складывавшийся за миллиарды лет эволюции Земли и жизни на ней.

Многочисленные факты геологического и исторического прошлого свидетельствуют о связи между изменениями климата и колебаниями содержания парниковых газов. В период от 4 до 3,5 млрд. лет назад яркость Солнца была примерно на 30% меньше, чем сейчас. Однако и под лучами молодого, «бледного» Солнца на Земле развивалась жизнь и образовывались осадочные породы: по крайней мере на части земной поверхности температура была выше точки замерзания воды. Некоторые ученые высказывают предположение, что в ту пору в земной атмосфере содержал ось в 1000 раз больше диоксида углерода , чем сейчас, и это компенсировало нехватку солнечной энергии, поскольку больше тепла, излучаемого Землей, оставалось в атмосфере. Усиливавшийся парниковый эффект мог стать одной из причин исключительно теплого климата позднее - в мезозойскую эру (эпоху динозавров). По данным анализа ископаемых остатков на Земле в ту пору было на 10-15 ос теплее, чем сейчас. Следует заметить, что тогда, 100 млн. лет назад и раньше, континенты занимали иное положение, чем в наше время, и океаническая циркуляция также была иной, поэтому перенос тепла от тропиков в полярные районы мог быть больше. Однако расчеты, выполненные Эриком Дж. Барроном, работающим сейчас в Пенсильванском университете, и другими исследователями, показывают, что с палеоконтинентальной географией могло быть связано не более половины мезозойского потепления. Остающуюся часть потепления легко объяснить ростом содержания диоксида углерода. Это предположение было впервые выдвинуто советскими учеными А. Б. Роновым из Государственного гидрологического института и М. И. Будыко из Главной геофизической обсерватории. Расчеты, подтверждающие это предложение, были проведены Эриком Барроном, Старли Л. Томпсоном из Национального центра атмосферных исследований (NCAR). Из геохимической модели, разработанной Робертом А. Бернером и Антонио К. Ласагой из Йельского университета и ныне покойным Робертом. Поля в штате Техас превратились в пустыню, после того как здесь в 1983 г. некоторое время продержалась засуха Такую картину, как показывают расчеты по компьютерным моделям, можно будет наблюдать во многих местах, если в результате глобального потепления уменьшится влажность почвы в центральных районах континентов, где сосредоточено производство зерна.

М. Гаррелсом из Университета Южной Флориды, следует, что диоксид углерода мог выделяться при исключительно сильной вулканической активности на срединно-океанических хребтах, где поднимающаяся магма формирует новое океаническое дно. Прямые свидетельства, указывающие на связь во время оледенений между содержанием в атмосфере парниковых газов и климатом, можно «извлечь» из пузырьков воздуха, включенных в антарктический лед, который образовался в древние эпохи в результате спрессовывания падающего снега. Группа исследователей, возглавляемая Клодом Лорью из Лаборатории гляциологии и геофизики в Гренобле, изучила колонку льда длиной 2000 м (соответствующую периоду продолжительностью 160 тыс. лет), полученную советскими исследователями на станции «Восток» в Антарктиде. Лабораторный анализ газов, заключенных в этой колонке льда, показал, что в древней атмосфере концентрации диоксида углерода и метана менялись согласованно и, что более важно, «в такт» с изменениями средней локальной температуры (она была определена по отношению концентраций изотопов водорода в молекулах воды). Во время последнего межледникового периода, продолжающегося уже 10 тыс. лет, и в предшествующее ему межледниковье (130 тыс. лет назад) продолжительностью также 10 тыс. лет, средняя температура в этом районе была на 10 ос выше, чем во время оледенений. (В целом на Земле в указанные периоды было на 5 ос теплее.) В эти же периоды в атмосфере содержал ось на 25% больше диоксида углерода и на 100070 больше метана, чем во время оледенений. Неясно, было ли причиной изменение содержания парниковых газов, а следствием климатические изменения или наоборот. Скорее всего, причиной оледенений были изменения орбиты Земли и особая динамика продвижения и отступания ледников; однако эти климатические колебания могли усиливаться благодаря изменениям биоты и колебаниям океанической циркуляции, влияющим на содержание парниковых газов в атмосфере. Еще более подробные данные о флуктуациях содержания парниковых газов и изменениях климата имеются для последних 100 лет, за которые произошло дальнейшее увеличение на 25% концентрации диоксида углерода и на 100% метана. «Записи» средней температуры на земном шаре для последних 100 лет были изучены двумя группами исследователей, возглавляемыми Джеймсом Э. Хансеном из Годдардовского института космических исследований Национального управления по аэронавтике и исследованию космического пространства, и Т. М. Л. Уигли из Отдела климата Университета Восточной Англии.

Задержка тепла атмосферой - основной компонент энергетического баланса Земли (рис.8). Примерно 30% энергии, поступающей от Солнца, отражается (слева) либо от облаков, либо от частиц, либо от поверхности Земли; остальные 70% поглощаются. Поглощенная энергия переизлучается в инфракрасном диапазоне поверхностью планеты.

Рис.

Эти ученые воспользовались данными измерений на метеостанциях, разбросанных по всем континентам (группа из Отдела климата включила также в анализ данные измерений на море). Вместе с тем в двух группах были приняты разные методики анализа наблюдений и учета «искажений», связанных, например, с тем, что некоторые метеостанции за сто лет «переехали» на другое место, а некоторые, расположенные в городах, давали данные, «загрязненные» влиянием тепла, выделяемого промышленными предприятиями или накапливаемого за день зданиями и мостовой. Последний эффект, приводящий к появлению «островов тепла», очень заметен в развитых странах, например в США. Вместе с тем, даже если рассчитанную для США поправку (она была получена Томасом Р. Карлом из Национального центра климатических данных в Эшвилле, шт. Северная Каролина, и П. Д. Джоунсом из Университета Восточной Англии) распространить на все данные по земному шару, в обеих записях останется «<реальное» потепление величиной 0,5 О С, относящееся к последним 100 годам. В согласии с общей тенденцией 1980-е годы остаются самым теплым десятилетием, а 1988, 1987 и 1981 гг. - наиболее теплыми годами (в порядке перечисления). Можно ли считать это «сигналом» парникового потепления? Казалось бы, можно, однако в действительности факты не столь однозначны. Возьмем для примера такое обстоятельство: вместо неуклонного потепления, какое можно ожидать от парникового эффекта, быстрое повышение температуры, происходившее до конца второй мировой войны, сменилось небольшим похолоданием, продлившимся до середины 1970-х годов, за которым последовал второй период быстрого потепления, продолжающийся по сей день. Какой характер примет изменение температуры в ближайшее время? Чтобы дать такой прогноз, необходимо ответить на три вопроса. Какое количество диоксида углерода и других парниковых газов будет выброшено в атмосферу? Насколько при этом возрастет концентрация этих газов в атмосфере? Какой климатический эффект вызовет это повышение концентрации, если будут действовать естественные и антропогенные факторы, которые могут ослаблять или усиливать климатические изменения? Прогноз выбросов - нелегкая задача для исследователей, занимающихся анализом человеческой деятельности. Какое количество диоксида углерода попадет в атмосферу, зависит главным образом от того, сколько ископаемого топлива будет сожжено и сколько лесов вырублено (последний фактор ответствен за половину прироста парниковых газов с 1800 г. и за 20070прироста в наше время). И тот и другой фактор зависят в свою очередь от множества причин. Так, на потреблении ископаемого топлива сказываются рост населения, переход к альтернативным источникам энергии и меры по экономии энергии, а также состояние мировой экономики. Прогнозы в основном сводятся к тому, что потребление ископаемого топлива на земном шаре в целом будет увеличиваться примерно с той же скоростью, что и сегодня намного медленнее, чем до энергетического кризиса 1970-х годов. В результате эмиссия (поступление в атмосферу) диоксида углерода в ближайшие несколько десятилетий, будет увеличиваться на 0,5-2070 в год. Другие парниковые газы, такие как ХФУ, оксиды азота и тропосферный озон, могут вносить в потепление климата почти столь же большой вклад, что и диоксид углерода, хотя в атмосферу их попадает значительно меньше: объясняется это тем, что они более эффективно поглощают солнечную радиацию. Предсказать, какова будет эмиссия этих газов - задача еще более трудная. Так, например, не вполне ясно происхождение некоторых газов, в частности метана; величина выбросов других газов, таких как ХФУ или озон, будет зависеть от того, какие изменения в технологии и политике произойдут в ближайшем будущем.

Обмен углеродом между атмосферой и различными «резервуарами» на Земле (рис.9). Каждое число указывает в миллиардах тонн приход или уход углерода (в форме диоксида) за год или его запас в резервуаре. В этих естественных циклах, один из которых «замыкается» на сушу,а другой на океан, из атмосферы удаляется ровно столько диоксида углерода, сколько в нее поступает, однако человеческая деятельность - сведение лесов и сжигание ископаемого топлива - приводит к тому, что содержание углерода в атмосфере ежегодно повышается на 3 млрд. тонн. Данные заимствованы из работы Берта Болина, работающего в Стокгольмском университете


Рис.9

Предположим, мы имеем разумный прогноз того, как будет изменяться эмиссия диоксида углерода. Какие изменения в этом случае произойдут с концентрацией этого газа в атмосфере? Атмосферный диоксид углерода «потребляется» растениями, а также океаном, где он расходуется на химические и биологические процессы. С изменением концентрации атмосферного диоксида углерода будет, вероятно, меняться и скорость «потребления» этого газа. Иными словами, процессы, обусловливающие изменение содержания атмосферного диоксида углерода, должны включать обратную связь. Диоксид углерода является «сырьем» для фотосинтеза в растениях, поэтому потребление его растениями скорее всего будет увеличиваться с накоплением его в атмосфере, что замедлит это накопление. Аналогично этому, поскольку содержание диоксида углерода в поверхностных водах океана находится в примерном равновесии с его содержанием в атмосфере, увеличение поглощения диоксида углерода океанской водой приведет к замедлению его накопления в атмосфере. Может случиться, однако, что накопление в атмосфере диоксида углерода и других парниковых газов приведет в действие механизмы положительной Обратной связи, которые будут усиливать климатический эффект. Так, быстрые изменения климата могут привести к исчезновению части лесов и других экосистем, что ослабит способность биосферы поглощать диоксид углерода. Более того, потепление может привести к быстрому высвобождению углерода, содержащегося в почве в составе мертвой органической материи. Этот углерод, количество которого вдвое выше, чем в атмосфере, постоянно превращается в диоксид углерода и метан под действием почвенных бактерий. Потепление может ускорить их «работу», в результате чего ускорится выделение диоксида углерода (из сухих почв) и метана (из районов, занятых рисовыми полями, из свалок и заболоченных земель). Довольно много" метана запасено также в осадках на континентальном шельфе и ниже слоя вечной мерзлоты в Арктике в виде клатратов - молекулярных решеток, состоящих из молекул метана и воды. Потепление шельфовых вод и таяние вечной мерзлоты могут привести к высвобождению метана. Несмотря на указанные неопределенности, многие исследователи считают, что поглощение диоксида углерода растениями и океаном замедлит накопление этого газа в атмосфере - по крайней мере в ближайшие 50-100 лет. Типичные оценки, основанные на существующей в настоящее время скорости эмиссии, показывают, что из всего количества диоксида углерода, попадающего в атмосферу, оставаться там будет примерно половина. Из этого следует, что удвоение концентрации диоксида углерода по сравнению с 1900 г. (до уровня 600 млн. произойдет примерно между 2030 и 2080 гг. Вместе с тем другие парниковые газы будут, скорее всего, накапливаться в атмосфере быстрее.