Свойства ферментов примеры. Привет студент. Максимальная скорость реакции при неконкурентном ингибировании не может быть достигнута путём повышения концентрации субстрата

ФЕРМЕНТЫ
органические вещества белковой природы, которые синтезируются в клетках и во много раз ускоряют протекающие в них реакции, не подвергаясь при этом химическим превращениям. Вещества, оказывающие подобное действие, существуют и в неживой природе и называются катализаторами. Ферменты (от лат. fermentum - брожение, закваска) иногда называют энзимами (от греч. en - внутри, zyme - закваска). Все живые клетки содержат очень большой набор ферментов, от каталитической активности которых зависит функционирование клеток. Практически каждая из множества разнообразных реакций, протекающих в клетке, требует участия специфического фермента. Изучением химических свойств ферментов и катализируемых ими реакций занимается особая, очень важная область биохимии - энзимология. Многие ферменты находятся в клетке в свободном состоянии, будучи просто растворены в цитоплазме; другие связаны со сложными высокоорганизованными структурами. Есть и ферменты, в норме находящиеся вне клетки; так, ферменты, катализирующие расщепление крахмала и белков, секретируются поджелудочной железой в кишечник. Секретируют ферменты и многие микроорганизмы. Первые данные о ферментах были получены при изучении процессов брожения и пищеварения. Большой вклад в исследование брожения внес Л. Пастер, однако он полагал, что соответствующие реакции могут осуществлять только живые клетки. В начале 20 в. Э. Бухнер показал, что сбраживание сахарозы с образованием диоксида углерода и этилового спирта может катализироваться бесклеточным дрожжевым экстрактом. Это важное открытие послужило стимулом к выделению и изучению клеточных ферментов. В 1926 Дж. Самнер из Корнеллского университета (США) выделил уреазу; это был первый фермент, полученный в практически чистом виде. С тех пор обнаружено и выделено более 700 ферментов, но в живых организмах их существует гораздо больше. Идентификация, выделение и изучение свойств отдельных ферментов занимают центральное место в современной энзимологии. Ферменты, участвующие в фундаментальных процессах превращения энергии, таких, как расщепление сахаров, образование и гидролиз высокоэнергетического соединения аденозинтрифосфата (АТФ), присутствуют в клетках всех типов - животных, растительных, бактериальных. Однако есть ферменты, которые образуются только в тканях определенных организмов. Так, ферменты, участвующие в синтезе целлюлозы, обнаруживаются в растительных, но не в животных клетках. Таким образом, важно различать "универсальные" ферменты и ферменты, специфичные для тех или иных типов клеток. Вообще говоря, чем более клетка специализирована, тем больше вероятность, что она будет синтезировать набор ферментов, необходимый для выполнения конкретной клеточной функции.
Ферменты как белки. Все ферменты являются белками, простыми или сложными (т.е. содержащими наряду с белковым компонентом небелковую часть).
См. также БЕЛКИ . Ферменты - крупные молекулы, их молекулярные массы лежат в диапазоне от 10 000 до более 1 000 000 дальтон (Да). Для сравнения укажем мол. массы известных веществ: глюкоза - 180, диоксид углерода - 44, аминокислоты - от 75 до 204 Да. Ферменты, катализирующие одинаковые химические реакции, но выделенные из клеток разных типов, различаются по свойствам и составу, однако обычно обладают определенным сходством структуры. Структурные особенности ферментов, необходимые для их функционирования, легко утрачиваются. Так, при нагревании происходит перестройка белковой цепи, сопровождающаяся потерей каталитической активности. Важны также щелочные или кислотные свойства раствора. Большинство ферментов лучше всего "работают" в растворах, pH которых близок к 7, когда концентрация ионов H+ и OH- примерно одинакова. Связано это с тем, что структура белковых молекул, а следовательно, и активность ферментов сильно зависят от концентрации ионов водорода в среде. Не все белки, присутствующие в живых организмах, являются ферментами. Так, иную функцию выполняют структурные белки, многие специфические белки крови, белковые гормоны и т.д.
Коферменты и субстраты. Многие ферменты с большой молекулярной массой проявляют каталитическую активность только в присутствии специфических низкомолекулярных веществ, называемых коферментами (или кофакторами). Роль коферментов играют большинство витаминов и многие минеральные вещества; именно поэтому они должны поступать в организм с пищей. Витамины РР (никотиновая кислота, или ниацин) и рибофлавин, например, входят в состав коферментов, необходимых для функционирования дегидрогеназ. Цинк - кофермент карбоангидразы, фермента, катализирующего высвобождение из крови диоксида углерода, который удаляется из организма вместе с выдыхаемым воздухом. Железо и медь служат компонентами дыхательного фермента цитохромоксидазы. Вещество, подвергающееся превращению в присутствии фермента, называют субстратом. Субстрат присоединяется к ферменту, который ускоряет разрыв одних химических связей в его молекуле и создание других; образующийся в результате продукт отсоединяется от фермента. Этот процесс представляют следующим образом:

Продукт тоже можно считать субстратом, поскольку все ферментативные реакции в той или иной степени обратимы. Правда, обычно равновесие сдвинуто в сторону образования продукта, и обратную реакцию бывает трудно зафиксировать.
Механизм действия ферментов. Скорость ферментативной реакции зависит от концентрации субстрата [[S]] и количества присутствующего фермента. Эти величины определяют, сколько молекул фермента соединится с субстратом, и именно от содержания фермент-субстратного комплекса зависит скорость реакции, катализируемой данным ферментом. В большинстве ситуаций, представляющих интерес для биохимиков, концентрация фермента очень мала, а субстрат присутствует в избытке. Кроме того, биохимики исследуют процессы, достигшие стационарного состояния, при котором образование фермент-субстратного комплекса уравновешивается его превращением в продукт. В этих условиях зависимость скорости (v) ферментативного превращения субстрата от его концентрации [[S]] описывается уравнением Михаэлиса - Ментен:


где KM - константа Михаэлиса, характеризующая активность фермента, V - максимальная скорость реакции при данной суммарной концентрации фермента. Из этого уравнения следует, что при малых [[S]] скорость реакции возрастает пропорционально концентрации субстрата. Однако при достаточно большом увеличении последней эта пропорциональность исчезает: скорость реакции перестает зависеть от [[S]] - наступает насыщение, когда все молекулы фермента оказываются занятыми субстратом. Выяснение механизмов действия ферментов во всех деталях - дело будущего, однако некоторые важные их особенности уже установлены. Каждый фермент имеет один или несколько активных центров, с которыми и связывается субстрат. Эти центры высокоспецифичны, т.е. "узнают" только "свой" субстрат или близкородственные соединения. Активный центр формируют особые химические группы в молекуле фермента, ориентированные друг относительно друга определенным образом. Происходящая так легко потеря ферментативной активности связана именно с изменением взаимной ориентации этих групп. Молекула субстрата, связанного с ферментом, претерпевает изменения, в результате которых разрываются одни и образуются другие химические связи. Чтобы этот процесс произошел, необходима энергия; роль фермента состоит в снижении энергетического барьера, который нужно преодолеть субстрату для превращения в продукт. Как именно обеспечивается такое снижение - до конца не установлено.
Ферментативные реакции и энергия. Высвобождение энергии при метаболизме питательных веществ, например при окислении шестиуглеродного сахара глюкозы с образованием диоксида углерода и воды, происходит в результате последовательных согласованных ферментативных реакций. В животных клетках в превращениях глюкозы в пировиноградную кислоту (пируват) или молочную кислоту (лактат) участвуют 10 разных ферментов. Этот процесс называется гликолизом. Первая реакция - фосфорилирование глюкозы - требует участия АТФ. На превращение каждой молекулы глюкозы в две молекулы пировиноградной кислоты расходуются две молекулы АТФ, но при этом на промежуточных этапах из аденозиндифосфата (АДФ) образуются 4 молекулы АТФ, так что весь процесс в целом дает 2 молекулы АТФ. Далее пировиноградная кислота окисляется до диоксида углерода и воды при участии ферментов, ассоциированных с митохондриями. Эти превращения образуют цикл, называемый циклом трикарбоновых кислот, или циклом лимонной кислоты.
См. также МЕТАБОЛИЗМ . Окисление одного вещества всегда сопряжено с восстановлением другого: первое отдает атом водорода, а второе его присоединяет. Катализируют эти процессы дегидрогеназы, обеспечивающие перенос атомов водорода от субстратов к коферментам. В цикле трикарбоновых кислот одни специфические дегидрогеназы окисляют субстраты с образованием восстановленной формы кофермента (никотинамиддинуклеотида, обозначаемого НАД), а другие окисляют восстановленный кофермент (НАДЧН), восстанавливая другие дыхательные ферменты, в том числе цитохромы (железосодержащие гемопротеины), в которых атом железа попеременно то окисляется, то восстанавливается. В конечном итоге восстановленная форма цитохромоксидазы, одного из ключевых железосодержащих ферментов, окисляется кислородом, попадающим в наш организм с вдыхаемым воздухом. Когда происходит горение сахара (окисление кислородом воздуха), входящие в его состав атомы углерода непосредственно взаимодействуют с кислородом, образуя диоксид углерода. В отличие от горения, при окислении сахара в организме кислород окисляет собственно железо цитохромоксидазы, но в конечном итоге его окислительный потенциал используется для полного окисления сахаров в ходе многоступенчатого процесса, опосредуемого ферментами. На отдельных этапах окисления энергия, заключенная в питательных веществах, высвобождается в основном маленькими порциями и может запасаться в фосфатных связях АТФ. В этом принимают участие замечательные ферменты, которые сопрягают окислительные реакции (дающие энергию) с реакциями образования АТФ (запасающими энергию). Этот процесс сопряжения известен как окислительное фосфорилирование. Не будь сопряженных ферментативных реакций, жизнь в известных нам формах была бы невозможна. Ферменты выполняют и множество других функций. Они катализируют разнообразные реакции синтеза, включая образование тканевых белков, жиров и углеводов. Для синтеза всего огромного множества химических соединений, обнаруженных в сложных организмах, используются целые ферментные системы. Для этого нужна энергия, и во всех случаях ее источником служат фосфорилированные соединения, такие, как АТФ.





Ферменты и пищеварение. Ферменты - необходимые участники процесса пищеварения. Только низкомолекулярные соединения могут проходить через стенку кишечника и попадать в кровоток, поэтому компоненты пищи должны быть предварительно расщеплены до небольших молекул. Это происходит в ходе ферментативного гидролиза (расщепления) белков до аминокислот, крахмала до сахаров, жиров до жирных кислот и глицерина. Гидролиз белков катализирует фермент пепсин, содержащийся в желудке. Ряд высокоэффективных пищеварительных ферментов секретирует в кишечник поджелудочная железа. Это трипсин и химотрипсин, гидролизующие белки; липаза, расщепляющая жиры; амилаза, катализирующая расщепление крахмала. Пепсин, трипсин и химотрипсин секретируются в неактивной форме, в виде т.н. зимогенов (проферментов), и переходят в активное состояние только в желудке и кишечнике. Это объясняет, почему указанные ферменты не разрушают клетки поджелудочной железы и желудка. Стенки желудка и кишечника защищает от пищеварительных ферментов и слой слизи. Некоторые важные пищеварительные ферменты секретируются клетками тонкого кишечника. Большая часть энергии, запасенной в растительной пище, такой, как трава или сено, сосредоточена в целлюлозе, которую расщепляет фермент целлюлаза. В организме травоядных животных этот фермент не синтезируется, и жвачные, например крупный рогатый скот и овцы, могут питаться содержащей целлюлозу пищей только потому, что целлюлазу вырабатывают микроорганизмы, заселяющие первый отдел желудка - рубец. С помощью микроорганизмов происходит переваривание пищи и у термитов. Ферменты находят применение в пищевой, фармацевтической, химической и текстильной промышленности. В качестве примера можно привести растительный фермент, получаемый из папайи и используемый для размягчения мяса. Ферменты добавляют также в стиральные порошки.
Ферменты в медицине и сельском хозяйстве. Осознание ключевой роли ферментов во всех клеточных процессах привело к широкому их применению в медицине и сельском хозяйстве. Нормальное функционирование любого растительного и животного организма зависит от эффективной работы ферментов. В основе действия многих токсичных веществ (ядов) лежит их способность ингибировать ферменты; таким же эффектом обладает и ряд лекарственных препаратов. Нередко действие лекарственного препарата или токсичного вещества можно проследить по его избирательному влиянию на работу определенного фермента в организме в целом или в той или иной ткани. Например, мощные фосфорорганические инсектициды и нервно-паралитические газы, разработанные в военных целях, оказывают свой губительный эффект, блокируя работу ферментов - в первую очередь холинэстеразы, играющей важную роль в передаче нервного импульса. Чтобы лучше понять механизм действия лекарственных препаратов на ферментные системы, полезно рассмотреть, как работают некоторые ингибиторы ферментов. Многие ингибиторы связываются с активным центром фермента - тем самым, с которым взаимодействует субстрат. У таких ингибиторов наиболее важные структурные особенности близки к структурным особенностям субстрата, и если в реакционной среде присутствуют и субстрат и ингибитор, между ними наблюдается конкуренция за связывание с ферментом; при этом чем больше концентрация субстрата, тем успешнее он конкурирует с ингибитором. Ингибиторы другого типа индуцируют в молекуле фермента конформационные изменения, в которые вовлекаются важные в функциональном отношении химические группы. Изучение механизма действия ингибиторов помогает химикам создавать новые лекарственные препараты. 0

История развития науки о ферментах

В основе всех жизненных процессов лежат тысячи химических реакций. Они идут в организме без применения высокой температуры и давления, т. е. в мягких условиях. Вещества, котopыe окисляются в клетках человека и животных, сгорают быстро и эффективно, обогащая организм энергией и строительным материалом. Но те же вещества могут годами храниться как в консервированном (изолированном от воздуха) виде, так и на воздухе в присутствии кислорода. Например, мясные и рыбные консервы, пастеризованное молоко, сахар, крупы не разлагаются при довольно длительном хранении. Возможность быстрого переваривания продуктов в живом организме осуществляется благодаря присутствию в клетках особых биологических катализаторов - ферментов.

Ферменты - это специфические белки, входящие в состав всех клеток и тканей живых организмов, играющие роль биологических катализаторов. О ферментах люди узнали давно. Еще в начале прошлого века в Петербурге К. С. Кирхгоф выяснил, что проросший ячмень способен превращать полисахарид крахмал в дисахарид мальтозу, а экстракт дрожжей расщеплял свекловичный сахар на моносахариды - глюкозу и фруктозу. Это были первые исследования в ферментологии. А практическое применение ферментативных процессов было известно с незапамятных времен. Это и сбраживание винограда, и закваска при приготовлении хлеба, и сыроварение, и многое другое.

Сейчас в разных учебниках, пособиях и в научной литературе применяются два понятия: «ферменты» и «энзимы». Эти названия идентичны. Они обозначают одно и то же - биологические катализаторы. Первое слово переводится как «закваска», второе - «в дрожжах».

Долгое время не представляли, что же происходит в дрожжах, какая сила, присутствующая в них, заставляет вещества разрушаться и превращаться в более простые. И только после изобретения микроскопа было установлено, что дрожжи - это скопление большого количества микроорганизмов, которые используют сахар в качестве своего основного питательного вещества. Иными словами, каждая дрожжевая клетка «начинена» ферментами, способными разлагать сахар. Но в то же время были известны и другие биологические катализаторы, не заключенные в живую клетку, а свободно «обитающие» вне ее. Например, они были найдены в составе желудочных соков, клеточных экстрактов. В связи с этим в прошлом различали два типа катализаторов: считалось, что собственно ферменты неотделимы от клетки и вне ее не могут функционировать, т. е. они «организованы». А «неорганизованные» катализаторы, которые могут работать вне клетки, называли энзимами. Такое противопоставление «живых» ферментов и «неживых» энзимов объяснялось влиянием виталистов, борьбой материализма и идеализма в естествознании. Точки зрения ученых разделились. Основоположник микробиологии Л. Пастер утверждал, что деятельность ферментов определяется жизнью клетки. Если клетку разрушить, то прекратится и действие фермента. Химики во главе с Ю. Либихом развивали чисто химическую теорию брожения, доказывая, что активность ферментов не зависит от существования клетки.

В 1871 г. русский врач М. М. Манассеина разрушила дрожжевые клетки, растирая их с речным песком. Клеточный сок, отделенный от остатков клеток, сохранял свою способность сбраживать сахар. Этот простой и убедительный опыт русского врача остался без должного внимания в царской России. Через четверть века немецкий ученый Э. Бухнер получил бесклеточный сок прессованием живых дрожжей под давлением до 5·10 6 Па. Этот сок, подобно живым дрожжам, сбраживал сахар с образованием спирта и оксида углерода (IV):

Работы А. Н. Лебедева по исследованию дрожжевых клеток и труды других ученых положили конец виталистическим представлениям в теории биологического катализа, а термины «фермент» и «энзим» стали применять как равнозначные.

В наши дни ферментология - это самостоятельная наука. Выделено и изучено около 2000 ферментов. Вклад в эту науку внесли советские ученые - наши современники А. Е. Браунштейн, В. Н. Орехович, В. А. Энгельгард, А. А. Покровский и др.

Химическая природа ферментов

В конце прошлого века было высказано предположение, что ферменты - это белки или какие-то вещества, очень похожие на белки. Потеря активности фермента при нагревании очень напоминает тепловую денатурацию белка. Диапазон температур при денатурации и при инактивации одинаков. Как известно, денатурация белка может быть вызвана не только нагреванием, но и действием кислот, солей тяжелых металлов, щелочей, длительным облучением ультрафиолетовыми лучами. Эти же химические и физические факторы приводят к потере активности фермента.

В растворах ферменты, как и белки, ведут себя под действием электрического тока сходным образом: молекулы движутся к катоду или аноду. Изменение концентрации водородных ионов в растворах белков или ферментов приводит к накоплению ими положительного или отрицательного заряда. Это доказывает амфотерный характер ферментов и тоже подтверждает их белковую природу. Еще одно свидетельство белковой природы ферментов - они не проходят через полупропицаемые мембраны. Это также доказывает их большую молекулярную массу. Но если ферменты - это белки, то при дегидратации их активность не должна уменьшаться. Опыты подтверждают правильность такого предположения.

Интересный опыт был проведен в лаборатории И. П. Павлова. Получая желудочный сок через фистулу у собак, сотрудники обнаружили, что, чем больше белка в соке, тем больше его активность, т. е. определяемый белок и есть фермент желудочного сока.

Таким образом, явления денатурации и подвижности в электрическом поле, амфотерность молекул, высокомолекулярная природа, способность осаждаться из раствора при действии водоотнимающих средств (ацетон или спирт) доказывают белковую природу ферментов.

К настоящему времени этот факт установлен многими, еще более тонкими физическими, химическими или биологическими методами.

Мы уже знаем, что белки бывают очень разные по составу и прежде всего они могут быть простыми или сложными. К каким же белкам относятся известные ныне ферменты?

Ученые различных стран установили, что многие ферменты - это простые белки. Это значит, что при гидролизе молекулы этих ферментов распадаются только до аминокислот. Ничего, кроме аминокислот, в гидролизате таких белков-ферментов обнаружить не удается. К простым ферментам относятся пепсин - фермент, переваривающий белки в желудке и содержащийся в желудочном соке, трипсин - фермент поджелудочного сока, папаин - растительный фермент, уреаза и др.

В сложные ферменты входят, кроме аминокислот, вещества, имеющие небелковую природу. Например, окислительно-восстановительные ферменты, встроенные в митохондрию, содержат, кроме белковой части, атомы железа, меди и другие термостабильные группы. Небелковой частью фермента могут быть и более сложные вещества: витамины, нуклеотиды (мономеры нуклеиновых кислот), нуклеотиды с тремя фосфорными остатками и т. д. Условились называть в таких сложных белках небелковую часть - кофермент, а белковую- апофермент.

Отличие ферментов от небиологических катализаторов

В школьных учебниках и пособиях по химии подробно разбирается действие катализаторов, дается представление об энергетическом барьере, энергии активации. Напомним только, что роль катализаторов заключается в их способности активировать молекулы веществ, вступающих в реакцию. Это приводит к снижению энергии активации. Реакция идет не в один, а в несколько этапов с образованием промежуточных соединений. Катализаторы не изменяют направление реакции, а только влияют на скорость достижения состояния химического равновесия. В катализируемой реакции всегда затрачивается меньше энергии по сравнению с некатализируемой. В ходе реакции фермент меняет свою упаковку, «напрягается» и по окончании реакции принимает исходную структуру, возвращается к первоначальной форме.

Ферменты те же катализаторы. Им свойственны все законы катализа. Но ферменты - белки, и это сообщает им особые свойства. Что же общего у ферментов с привычными для нас катализаторами, например платиной, оксидом ванадия (V) и другими неорганическими ускорителями реакций, а что их отличает?

Один и тот же неорганический катализатор может применяться в разных производствах. А фермент катализирует только одну реакцию или один вид реакции, т. е. он более специфичен, чем неорганический катализатор.

Температура всегда влияет на скорости химических реакций. Большинство реакций с неорганическими катализаторами идет при очень высоких температурах. При повышении температуры скорость реакции, как правило, увеличивается (рис. 1). Для ферментативных реакций это увеличение ограничено определенной температурой (температурный оптимум). Дальнейшее повышение температуры вызывает изменения в молекуле фермента, приводящие к уменьшению скорости реакции (рис. 1). Но некоторые ферменты, например ферменты микроорганизмов, обнаруженных в воде горячих природных источников, не только выдерживают температуры, близкие к точке кипения воды, но и даже, проявляют свою максимальную активность. Для большинства же ферментов температурный оптимум близок к 35-45 °С. При более высоких температурах их активность уменьшается, а затем происходит полная тепловая денатурация.

Рис. 1. Влияние температуры на активность ферментов: 1 - увеличение скорости реакции, 2 - уменьшение скорости реакции.

Многие неорганические катализаторы проявляют свою максимальную эффективность в сильнокислой или сильно-щелочной среде. В отличие от них ферменты активны только при физиологических значениях кислотности раствора, только при такой концентрации ионов водорода, которая совместима с жизнью и нормальным функционированием клетки, органа или системы.

Реакции с участием неорганических катализаторов протекают, как правило, при высоких давлениях, а ферменты работают при нормальном (атмосферном) давлении.

И самым удивительным отличием фермента от других катализаторов является то, что скорость реакций, катализируемых ферментами, в десятки тысяч, а иногда и в миллионы раз выше той, которая может быть достигнута при участии неорганических катализаторов.

Известный всем пероксид водорода, применяемый в быту как отбеливающее и дезинфицирующее вещество, без катализаторов разлагается медленно:

В присутствии неорганического катализатора (солей железа) эта реакция идет несколько быстрее. А каталаза (фермент, присутствующий практически во всех клетках) разрушает пероксид водорода с невообразимой скоростью: одна молекула каталазы расщепляет в одну минуту более 5 млн. молекул Н 2 О 2 .

Универсальное распространение каталазы в клетках всех органов аэробных организмов и высокая активность этого фермента объясняются тем, что пероксид водорода - это мощный клеточный яд. Он получается в клетках как побочный продукт многих реакций, но на страже стоит фермент каталаза, который сейчас же разрушает пероксид водорода на безвредные кислород и воду.

Активный центр фермента

Обязательным этапом в катализируемой реакции является взаимодействие фермента с тем веществом, превращение которого он катализирует,- с субстратом: образуется фермент-субстратный комплекс. В приведенном выше примере пероксид водорода - это субстрат для действия каталазы.

Интересным оказывается то, что в ферментативных реакциях молекула субстрата во много раз меньше, чем молекула белка-фермента. Следовательно, субстрат не может контактировать со всей огромной молекулой фермента, а только с каким-то ее небольшим участком или даже отдельной группой, атомом. Для подтверждения этого предположения ученые отщепляли от фермента одну или несколько аминокислот, и это не влияло или почти не влияло на скорость катализируемой реакции. Но отщепление отдельных определенных аминокислот или группы приводило к полной потере каталитических свойств фермента. Так сформировалось представление об активном центре фермента.

Активный центр - это такой участок белковой молекулы, который обеспечивает соединение фермента с субстратом и дает возможность для дальнейших превращений субстрата. Были изучены некоторые активные центры разных ферментов. Это или функциональная группа (например, ОН-группа серина), или отдельная аминокислота. Иногда для обеспечения каталитического действия нужно несколько аминокислот в определенном порядке.

В составе активного центра выделяют различные по своим функциям участки. Одни участки активного центра обеспечивают сцепление с субстратом, прочный контакт с ним. Поэтому их называют якорными или контактными участками. Другие выполняют собственно каталитическую функцию, активируют субстрат - каталитические участки. Такое условное разделение активного центра помогает более точно представить механизм каталитической реакции.

Тип химической связи в фермент-субстратных комплексах тоже изучался. Вещество (субстрат) удерживается на ферменте при участии самых различных типов связей: водородных мостиков, ионных, ковалентных, донорно-акцепторных связей, ван-дер-ваальсовых сил сцепления.

Деформация молекул фермента в растворе приводит к появлению его изомеров, отличающихся третичной структурой. Иными словами, фермент ориентирует свои функциональные группы, входящие в активный центр, так, чтобы проявилась наибольшая каталитическая активность. Но и молекулы субстрата также могут деформироваться, «напрягаться» при взаимодействии с ферментом. Эти современные представления о фермент-субстратном взаимодействии отличаются от господствовавшей ранее теории Э. Фишера, который считал, что молекула субстрата точно соответствует активному центру фермента и подходит к нему как ключ к замку.

Свойства ферментов

Важнейшим свойством ферментов является преимущественное ускорение одной из нескольких теоретически возможных реакций. Это позволяет субстратам выбрать наиболее выгодные для организма цепочки превращений из целого ряда возможных путей.

В зависимости от условий ферменты способны катализировать как прямую, так и обратную реакции. Например, пировиноградная кислота под влиянием фермента лактатдегидрогеназы превращается в конечный продукт брожения - молочную кислоту. Этот же фермент катализирует и обратную реакцию, и само название он получил не по прямой, а по обратной реакции. Обе реакции происходят в организме при разных условиях:

Это свойство ферментов имеет большое практическое значение.

Другое важное свойство ферментов - термолабильность, т. е. высокая чувствительность к изменениям температуры. Мы уже говорили, что ферменты являются белками. Для большинства из них температура свыше 70 °С приводит к денатурации и потере активности. Из курса химии известно, что повышение температуры на 10 °С приводит к увеличению скорости реакции в 2-3 раза, что характерно и для ферментативных реакций, но до определенного предела. При температурах, близких к 0 °С, скорость ферментативных реакций замедляется до минимума. Это свойство широко используется в различных отраслях народного хозяйства, особенно в сельском хозяйстве и медицине. Например, все существующие сейчас способы консервации почки перед ее пересадкой больному включают охлаждение этого органа, чтобы снизить интенсивность биохимических реакций и продлить время жизни почки до ее пересадки человеку. Такой прием сохранил здоровье и спас жизнь десяткам тысяч людей в мире.

Рис. 2. Влияние pH на активность ферментов.

Одним из важнейших свойств белков-ферментов является их чувствительность к реакции среды, концентрации водородных ионов или гидроксид-ионов. Ферменты активны только в узком интервале кислотности или щелочности среды (pH). Например, активность пепсина в полости желудка максимальна при pH около 1 -1,5. Снижение кислотности приводит к глубокому нарушению пищеварительного акта, недоперевариванию пищи и тяжелым осложнениям. Из курса биологии вам известно, что пищеварение начинается уже в ротовой полости, где присутствует амилаза слюны. Оптимальное значение pH для нее 6,8-7,4. Для разных ферментов пищеварительного тракта характерны большие различия в оптимуме pH (рис. 2). Изменение реакции среды приводит к изменению зарядов на молекуле фермента или даже в его активном центре, вызывая снижение или полную потерю активности.

Следующим важным свойством является специфичность действия фермента. Каталаза расщепляет только пероксид водорода, уреаза - только мочевину H 2 N-СО-NH 2 , т. е. фермент катализирует превращение только одного субстрата, только его молекулу он «узнает». Такая специфичность считается абсолютной. Если фермент катализирует превращение нескольких субстратов, имеющих одинаковую функциональную группу, то такая специфичность называется групповой. Например, фосфатаза катализирует отщепление остатка фосфорной кислоты:

Разновидностью специфичности является чувствительность фермента только к одному изомеру - стерео-химическая специфичность.

Ферменты влияют на скорость превращения различных веществ. Но и на ферменты влияют некоторые вещества, резко изменяя их активность. Вещества, которые повышают активность ферментов, активизируют их, называются активаторами, а угнетающие их - ингибиторами. Ингибиторы могут подействовать на фермент необратимо. После их действия фермент уже никогда не может катализировать свою реакцию, так как его структура будет сильно изменена. Так действуют на фермент соли тяжелых металлов, кислоты, щелочи. Обратимый ингибитор может быть удален из раствора, и фермент вновь приобретает активность. Такое обратимое ингибирование часто протекает по конкурентному типу, т. е. за активный центр борются субстрат и похожий на него ингибитор. Снять такое ингибирование можно, если увеличить концентрацию субстрата и вытеснить ингибитор с активного центра субстратом.

Важным свойством многих ферментов является то, что они находятся в тканях и клетках в неактивной форме (рис. 3). Неактивная форма ферментов называется проферментом. Классическими его примерами являются неактивные формы пепсина или трипсина. Существование неактивных форм ферментов имеет большое биологическое значение. Если бы пепсин или трипсин вырабатывались сразу в активной форме, то это приводило бы к тому, что, например, пепсин «переваривал» стенку желудка, т. е. желудок «переваривал» сам себя. Такого не происходит потому, что пепсин или трипсин становятся активными только после попадания в полость желудка или в тонкий кишечник: от пепсина под действием соляной кислоты, содержащейся в желудочном соке, отщепляется несколько аминокислот, и он приобретает способность расщеплять белки. А сам желудок предохранен теперь от действия пищеварительных ферментов слизистой оболочкой, выстилающей его полость.

Рис. 3 Схема превращения трипсиногена в активный трипсин: А - трипсиноген; Б - трипсин; 1 - место отрыва пептида; 2 - водородные связи; 3 - дисульфидный мостик; 4 - пептид, отщепленный при активации.

Процесс активации фермента идет, как правило, одним из четырех путей, представленных на рисунке 4. В первом случае отщепление пептида от неактивного фермента «открывает» активный центр и делает фермент активным.

Рис. 4 Пути активации ферментов (штриховкой отмечена молекула субстрата):

1 - отщепление от профермента небольшого участка (пептида) и превращение неактивного профермента в активный фермент; 2 - образование дисульфидных связей из SH-групп, освобождающее активный центр; 3 - образование комплекса белка с металлами, активирующее фермент: 4 образование комплекса фермента с каким-нибудь веществом (при этом освобождается доступ к активному центру).

Второй путь представляет собой образование дисульфидных S-S-мостиков, делающих доступным активный центр. В третьем случае присутствие металла активирует фермент, который может работать только в комплексе с этим металлом. Четвертый путь иллюстрирует активацию каким-то веществом, которое связывается с периферическим участком белковой молекулы и деформирует фермент таким образом, чтобы облегчить доступ субстрата к активному центру.

В последние годы обнаружен еще один способ регуляции активности ферментов Выяснилось, что один фермент, например лактатде-гидрогеназа, может находиться в нескольких молекулярных формах, отличающихся между собой, хотя они все катализируют одну реакцию. Такие различные по составу молекулы фермента, которые катализируют одну и ту же реакцию, встречаются даже внутри одной и той же клетки. Их называют изоферментами, т. е. изомерами фермента. У названной уже лактатдегидрогеназы найдено пять различных изоферментов. Какова роль нескольких форм одного фермента? Видимо, организм «подстраховывает» некоторые особенно важные реакции, когда при изменении условий в клетке работает то одна, то другая форма изофермента, и обеспечивает необходимую скорость и направление течения процесса.

И еще одно важное свойство ферментов. Часто они функционируют в клетке не отдельно друг от друга, а организованы в виде комплексов - ферментных систем (рис. 5): продукт предыдущей реакции - субстрат для последующей. Эти системы встроены в клеточные мембраны и обеспечивают быстрое направленное окисление вещества, «перебрасывая» его от фермента к ферменту. Синтетические процессы в клетке идут в подобных же ферментных системах.

Классификация ферментов

Круг вопросов, изучаемых ферментологией, широк. Количество ферментов, применяемых в здравоохранении, сельском хозяйстве, микробиологии и других отраслях науки и практики, велико. Это создавало трудность при характеристике ферментативных реакций, так как один и тот же фермент можно назвать или по субстрату, или по типу катализируемых реакций, или старым термином,прочно вошедшим в литературу: например пепсин, трипсин, каталаза.

Рис. 5. Предполагаемая структура мультиферментного комплекса, синтезирующего жирные кислоты (семь ферментных субъединиц отвечают за семь химических реакций).

Поэтому в 1961 г. Международный биохимический съезд в Москве утвердил классификацию ферментов, в основу которой положен тип реакции, катализируемой данным ферментом. В названии фермента обязательно присутствует название субстрата, т. е. того соединения, на которое воздействует данный фермент, и окончание -аза. Например, аргиназа катализирует гидролиз аргинина.

По этому принципу все ферменты были разделены на шесть классов.

1. Оксидоредуктазы-ферменты, катализирующие окислительно-восстановительные реакции, например каталаза:

2. Трансферазы - ферменты, катализирующие перенос атомов или радикалов, например метилтрансферазы, переносящие СНз-группу:

3. Гидролазы - ферменты, разрывающие внутримолекулярные связи путем присоединения молекул воды, например фосфатаза:

4. Лиазы - ферменты, отщепляющие от субстрата ту или иную группу без присоединения воды, негидролитическим путем, например отщепление карбоксильной группы декарбоксилазой:

5. Изомеразы - ферменты, катализирующие превращение одного изомера в другой:

Глюкозо-6-фосфат-›глюкозо-1-фосфат

6. Ферменты, катализирующие реакции синтеза, например синтез пептидов из аминокислот. Этот класс ферментов носит название синтетаз.

Каждый фермент предложили закодировать шифром из четырех цифр, где первая из них обозначает номер класса, а остальные три характеризуют более подробно свойства фермента, его подкласс и индивидуальный номер в каталоге.

В качестве примера классификации ферментов приведем четырехзначный код, присвоенный пепсину,- 3.4.4Л. Цифра 3 обозначает класс фермента - гидролазы. Следующая цифра 4 кодирует подкласс пептидгидролаз, т. е. тех ферментов, которые гидролизуют именно пептидные связи. Еще одна цифра 4 обозначает под-подкласс, называемый пептидилпептидгидролазами. В этот подподкласс входят уже индивидуальные ферменты, и первым в нем значится пепсин, которому и присвоен порядковый номер 1.

Так получается его код - 3.4.4.1. Точки приложения действия ферментов класса гидролаз показаны на рисунке 6.

Рис. 6. Расщепление пептидных связей различными протеолитнческими ферментами.

Действие ферментов

Обычно ферменты выделяют из различных объектов животного, растительного или микробного происхождения и изучают их действие вне клетки и организма. Эти исследования очень важны для понимания механизма действия ферментов, изучения их состава, особенностей катализируемых ими реакций. Но полученные таким образом сведения нельзя механически непосредственно переносить на деятельность ферментов в живой клетке. Вне клетки трудно воспроизвести те условия, в которых работает фермент, например в митохондрии или лизосоме. К тому же не всегда известно, сколько из имеющихся молекул фермента участвует в реакции - все или только какая-то их часть.

Почти всегда оказывается, что клетка содержит тот или иной фермент, по содержанию превышающий в несколько десятков раз необходимое количество для осуществления нормального обмена веществ. Обмен веществ различен по интенсивности в разные периоды жизни клетки, однако ферментов в ней значительно больше, чем того требовал бы самый максимальный уровень обмена веществ. Например, в состав клеток сердечной мышцы входит столько цитохрома с, которое могло бы осуществить окисление, в 20 раз большее, чем максимальное потребление кислорода сердечной мышцей. Позднее были обнаружены вещества, которые могут «выключать» часть молекул ферментов. Это так называемые тормозящие факторы. Для понимания механизма действия ферментов важно и то, что в клетке они находятся не просто в растворе, а встроены в структуру клетки. Сейчас уже известно, какие ферменты вмонтированы в наружную мембрану митохондрии, какие встроены во внутреннюю, какие связаны с ядром, лизосомами и другими субклеточными структурами.

Близкое «территориальное» расположение фермента, катализирующего первую реакцию, к ферментам, катализирующим вторую, третью и последующие реакции, сильно влияет на суммарный результат их действия. Например, в митохондрии вмонтирована цепь ферментов, передающих электроны на кислород,- цитохромная система. Она катализирует окисление субстратов с образованием энергии, которая аккумулируется в АТФ.

При извлечении ферментов из клетки слаженность их совместной работы нарушается. Поэтому изучать работу ферментов стараются без разрушения тех структур, в которые встроены их молекулы. Например, если срез ткани подержать в растворе субстрата, а затем обработать реактивом, который с продуктами реакции даст окрашенный комплекс, то в микроскопе будут четко видны окрашенные участки клетки: в этих участках был локализован (расположен) фермент, который расщеплял субстрат. Так было установлено, в каких именно клетках желудка содержится пепсиноген, из которого получается фермент пепсин.

Сейчас широко распространен другой метод, который позволяет установить локализацию ферментов,- разделительное центрифугирование. Для этого исследуемую ткань (например, кусочки печени лабораторных животных) измельчают, а затем готовят из нее кашицу в растворе сахарозы. Смесь переносят в пробирки и вращают их с большими скоростями в центрифугах. Различные клеточные элементы в зависимости от их массы и размеров распределяются в плотном растворе сахарозы при вращении примерно следующим образом:

Для получения тяжелых ядер требуется относительно небольшое ускорение (меньшее число оборотов). После отделения ядер, увеличив число оборотов, последовательно осаждают митохондрии, микросомы, получают цитоплазму. Теперь активность ферментов можно изучать в каждой из выделенных фракций. Оказывается, что большинство из известных ферментов локализованы преимущественно в той или иной фракции. Например, фермент альдолаза локализован в цитоплазме, а фермент, окисляющий капроновую кислоту,- преимущественно в митохондриях.

При повреждении мембраны, в которую встроены ферменты, комплексные взаимосвязанные процессы не протекают, т. е. каждый фермент может действовать только сам по себе.

Клетки растений и микроорганизмов, как и клетки животных, содержат очень похожие клеточные фракции. Например, пластиды растений по ферментному набору напоминают митохондрии. В микроорганизмах обнаружены зерна, напоминающие рибосомы и тоже содержащие большие количества рибонуклеиновой кислоты. Ферменты, входящие в состав животных, растительных и микробных клеток, обладают сходным действием. Например, гиалуронидаза облегчает микробам проникновение в организм, способствуя разрушению клеточной стенки. Этот же фермент обнаружен в различных тканях животных организмов.

Получение и применение ферментов

Ферменты находятся во всех тканях животных и растений. Однако количество одного и того же фермента в разных тканях и прочность связи фермента с тканью неодинаковы. Поэтому практически его получение не всегда оправдано.

Источником получения ферментов могут быть пищеварительные соки человека и животных. В соках относительно мало посторонних примесей, клеточных элементов и других компонентов, от которых надо избавляться при получении чистого препарата. Это почти чистые растворы ферментов.

Из тканей получить фермент труднее. Для этого ткань измельчают, клеточные структуры разрушают, растирая измельченную ткань с песком, или обрабатывают ультразвуком. При этом ферменты «вываливаются» из клеток и мембранных структур. Их теперь очищают и отделяют друг от друга. Для очистки используют различную способность ферментов разделяться на хроматографических колонках, неодинаковую их подвижность в электрическом поле, осаждение их спиртом, солями, ацетоном и другие методы. Так как большинство ферментов связано с ядром, митохондриями, рибосомами или другими субклеточными структурами, сначала выделяют центрифугированием эту фракцию, а затем из нее извлекают фермент

Разработка новых методов очистки позволила получить ряд кристаллических ферментов в очень чистом виде, которые могут храниться годами.

Сейчас уже невозможно установить, когда люди впервые применили фермент, но можно с большой уверенностью утверждать, что это был фермент растительного происхождения. Люди давно обратили внимание на полезность того или иного растения не только как пищевого продукта. Например, аборигены Антильских островов издавна использовали сок дынного дерева для лечения язв и других кожных заболеваний.

Рассмотрим более подробно особенности получения и отрасли применения ферментов на примере одного из хорошо известных ныне растительных биокатализаторов - папаина. Этот фермент содержится в млечном соке во всех частях тропического плодового дерева папайи - гигантской древовидной травы, достигающей 10 м. Ее плоды похожи по форме и вкусу на дыню и содержат большое количество фермента папаина. Еще в начале XVI в. испанские мореплаватели обнаружили это растение в естественных условиях в Центральной Америке. Затем его завезли в Индию, а оттуда во все тропические страны. Васко да Гама, увидевший папайю в Индии, назвал ее золотым деревом жизни, а Марко Поло сказал, что папайя - это «дыня, вскарабкавшаяся на дерево». Мореплаватели знали, что плоды дерева спасают от цинги и дизентерии.

В нашей стране папайя растет на Черноморском побережье Кавказа, в ботаническом саду Академии наук России в специальных теплицах. Сырье для фермента - млечный сок - получают из надрезов на кожице плода. Затем сок сушат в лаборатории в вакуумных сушильных шкафах при невысоких температурах (не более 80 °С). Высушенный продукт растирают и хранят в стерильной упаковке, залитой парафином. Это уже достаточно активный препарат. Ферментативную активность его можно оценить по количеству расщепленного за единицу времени белка казеина. За одну биологическую единицу активности папаина принимают такое количество фермента, которого при введении в кровь достаточно для появления симптома «свисания ушей» у кролика массой 1 кг. Этот феномен происходит потому, что папаин начинает действовать на коллагеновые белковые нити в ушах кролика.

Папаин обладает целым спектром свойсте: протеолитическим, противовоспалительным, антикоагуляционным (препятствующим свертыванию крови), дегидратационным, болеутоляющим и бактерицидным. Он разрушает белки до полипептидов и аминокислот. Причем это расщепление идет глубже, чем при действии других ферментов животного и бактериального происхождения. Особенностью папаина является его способность быть активным в широком интервале pH и при больших колебаниях температуры, что особенно важно и удобно для широкого применения этого фермента. А если к тому же учесть, что для получения ферментов, сходных по действию с папаином (пепсин, трипсин, лидаза), требуются кровь, печень, мышцы или другие ткани животных, то преимущество и экономическая эффективность растительного фермента папаина несомненны.

Области применения папаина очень разнообразны. В медицине он используется для обработки ран, где способствует расщеплению белков поврежденных тканей и очищает раневую поверхность. Незаменим папаин при лечении различных заболеваний глаз. Он вызывает рассасывание помутневших структур органа зрения, делая их прозрачными. Известно положительное действие фермента при заболеваниях органов пищеварения. Хорошие результаты получены при применении папаина для лечения кожных болезней, ожогов, а также в невропатологии, урологии и других отраслях медицины.

Кроме медицины, большое количество этого фермента расходуется в виноделии и пивоварении. Папаин увеличивает сроки хранения напитков. При обработке папаином мясо становится мягким и быстроусваиваемым, сроки хранения продуктов резко увеличиваются. Шерсть, идущая в текстильную промышленность, после обработки папаином не скручивается и не сопровождается усадкой. Недавно папаин начали применять в кожевенном производстве. Кожаные изделия после обработки ферментом становятся мягкими, эластичными, более прочными и долговечными.

Тщательное изучение некоторых неизлечимых ранее болезней привело к необходимости вводить в организм недостающие ферменты для замены тех, активность которых снижена. Можно было бы ввести в организм необходимое количество недостающих ферментов или «добавить» молекулы тех ферментов, которые в органе или ткани снизили свою каталитическую активность. Но на эти ферменты организм реагирует как на чужеродные белки, отторгает их, вырабатывает на них антитела, что в конце концов приводит к быстрому распаду введенных белков. Ожидаемого терапевтического эффекта не будет. Вводить ферменты с пищей тоже нельзя, так как пищеварительные соки их «переварят» и они потеряют свою активность, распадутся до аминокислот, не дойдя до клеток и тканей. Введение ферментов прямо в кровоток приводит их к разрушению тканевыми протеазами. Устранить эти трудности удается, применяя иммобилизованные ферменты. В основе принципа иммобилизации лежит способность ферментов «привязываться» к стабильному носителю органической или неорганической природы. Примером химического связывания фермента с матрицей (носителем) является образование прочных ковалентных связей между их функциональными группами. Матрицей может быть, например, пористое стекло, содержащее функциональные аминогруппы, к которым химически «привязывают» фермент.

При применении ферментов часто возникает необходимость сравнивать их активности. Как узнать более активный фермент? Как рассчитать активность разных очищенных препаратов? Условились за активность фермента принимать количество субстрата, которое за одну минуту может превратить 1 г ткани, содержащий этот фермент, при 25 °С. Чем больше субстрата переработал фермент, тем он активнее. Активность одного и того же фермента меняется в связи с возрастом, полом, временем суток, состоянием организма, а также зависит от желез внутренней секреции, вырабатывающих гормоны.

Природа почти не ошибается, производя одинаковые белки в течение всей жизни организма и передавая эту строгую информацию о производстве тех же белков из поколения в поколение. Однако иногда в организме появляется измененный белок, в составе которого встречается одна или несколько «лишних» аминокислот или, наоборот, они утрачены. В настоящее время известно много таких молекулярных ошибок. Они объясняются разными причинами и могут вызвать болезненные изменения в организме. Такие болезни, в появлении которых повинны ненормальные молекулы белка, получили в медицине название молекулярных. Например, гемоглобин здорового человека, состоящий из двух полипептидных цепей (а и в), и гемоглобин больного серповидно-клеточной анемией (эритроцит имеет форму серпа) отличаются только тем, что у больных в в-цепи глутаминовая кислота заменена валином. Серповидно-клеточная анемия - это наследственная болезнь. Изменения гемоглобина передаются от родителей потомству.

Болезни, возникающие при изменении активности ферментов, называются ферментопатиями. Они, как правило, наследуются, передаются от родителей детям. Например, при врожденной фенилкетонурии нарушается следующее превращение:

При недостатке фермента фенилаланингидроксилазы фенилаланин не превращается в тирозин, а накапливается, что вызывает расстройство нормальной функции ряда органов, в первую очередь расстройство функции центральной нервной системы. Болезнь развивается с первых дней жизни ребенка, и к шести-семи месяцам жизни появляются ее первые симптомы. В крови и моче таких больных можно обнаружить огромные по сравнению с нормой количества фенилаланина. Своевременное выявление такой патологии и уменьшение приема той пищи, которая содержит много фенилаланина, оказывает положительное лечебное действие.

Другой пример: отсутствие у детей фермента, превращающего галактозу в глюкозу, приводит к накоплению в организме галактозы, которая в больших количествах накапливается в тканях и поражает печень, почки, глаза. Если отсутствие фермента обнаружено своевременно, то ребенка переводят на диету, не содержащую галактозу. Это ведет к исчезновению признаков заболевания.

Благодаря существованию ферментных препаратов расшифровывают структуру белков и нуклеиновых кислот. Без них невозможны производство антибиотиков, виноделие, хлебопечение, синтез витаминов. В сельском хозяйстве применяются стимуляторы роста, которые оказывают действие на активирование ферментативных процессов. Таким же свойством обладают многие лекарственные препараты, которые подавляют или активируют в организме деятельность ферментов.

Без ферментов невозможно представить себе развитие таких перспективных направлений, как воспроизводство химических процессов, происходящих в клетке, и создания на этой основе современной промышленной биотехнологии. Пока еще ни один современный химический завод не способен соперничать с обычным листком растения, в клетках которого с участием ферментов и солнечных лучей из воды и углекислого газа синтезируется огромное число разнообразных сложных органических веществ. При этом в атмосферу выделяется в большом количестве столь необходимый нам для жизни кислород.

Ферментология - молодая и перспективная наука, отделившаяся от биологии и химии и обещающая много удивительных открытий всем, кто решит заняться ею всерьез.

Скачать реферат: У вас нет доступа к скачиванию файлов с нашего сервера.

Тема: «СВОЙСТВА И КЛАССИФИКАЦИЯ ФЕРМЕНТОВ. ВЛИЯНИЕ ТЕМПЕРАТУРЫ И рН СРЕДЫ НА АКТИВНОСТЬ ФЕРМЕНТОВ. СПЕЦИФИЧНОСТЬ ДЕЙСТВИЯ ФЕРМЕНТОВ. ОПРЕДЕЛЕНИЕ АКТИВНОСТИ ФЕРМЕНТОВ»

1. Химическая природа ферментов. Значение ферментов для жизнедеятельности организма.

2. Основные свойства ферментов. Влияние концентрации фермента и субстрата, температуры и рН среды на скорость ферментативной реакции. Олигодинамичность и обратимость действия ферментов.

3. Специфичность действия ферментов (абсолютная, относительная и стереохимическая). Примеры.

4. Важнейший признак, положенный в основу классификации ферментов. Понятие о кодовом номере фермента. Классы ферментов: оксидоредуктазы, трансферазы, гидролазы, лиазы, изомеразы, лигазы. Тип и общее уравнение катализируемых реакций, принципы формирования подклассов.

5. Номенклатура ферментов (понятие о систематическом и рабочем (рекомендуемом) названиях ферментов, их использование).

6. Определение активности ферментов. Аналитические методы, применяемые для определения активности. Единицы общей, удельной, молекулярной активности ферментов, их использование. Формула для расчёта общей активности фермента в сыворотке крови.

Раздел 7.1

Химическая природа ферментов. Значение ферментов для жизнедеятельности организма.

7.1.1. Протекание процессов обмена веществ в организме определяется действием многочисленных ферментов — биологических катализаторов белковой природы. Они ускоряют химические реакции и сами при этом не расходуются. Термин «фермент» происходит от латинского слова fermentum — закваска. Наряду с этим понятием в литературе используется равноценный термин «энзим» (en zyme - в дрожжах) греческого происхождения. Отсюда раздел биохимии, изучающий ферменты, получил название «энзимология».

Энзимология составляет основу познания на молекулярном уровне важнейших проблем физиологии и патологии человека. Переваривание пищевых веществ и их использование для выработки энергии, образование структурных и функциональных компонентов тканей, сокращение мышц, передача электрических сигналов по нервным волокнам, восприятие света глазом, свертывание крови — каждый из этих физиологических механизмов имеет в основе каталитическое действие определенных ферментов. Было показано, что многочисленные заболевания непосредственно нарушением ферментативного катализа; определение активности ферментов в крови и других тканях даёт ценные сведения для медицинской диагностики; ферменты или их ингибиторы могут применяться как лекарственные вещества. Таким образом, знание важнейших особенностей ферментов и катализируемых ими реакций необходимо при рациональном подходе к изучению заболеваний человека, их диагностике и лечению.

7.1.2. Вещества, превращения которых катализируют ферменты, называются субстратами . Фермент, соединяясь с субстратом, образует фермент-субстратный комплекс (рисунок 7.1).

Рисунок 7.1. Образование фермент-субстратного комплекса в ходе катализируемой реакции.

Образование этого комплекса способствует снижению энергетического барьера, который нужно преодолеть молекуле субстрата для вступления в реакцию (рисунок 7.2). По завершении реакции фермент-субстратный комплекс распадается на продукт (продукты) и фермент. Фермент по окончании реакции возвращается в своё исходное состояние и может взаимодействовать с новой молекулой субстрата.

Рисунок 7.2. Влияние фермента на энергетический барьер реакции. Ферменты, действуя как катализаторы, снижают энергию активации, которая требуется для того, чтобы могла произойти реакция.

7.1.3. Для ферментов характерны свойства, присущие всем белкам . В частности, молекулы ферментов, как и других белков, построены из α-аминокислот, соединённых пептидными связями. Поэтому растворы ферментов дают положительную биуретовую реакцию , а их гидролизаты - положительную нингидриновую реакцию . Нативные свойства и функции ферментов определяются наличием определённой пространственной структуры (конформации) их полипептидной цепи. Изменение этой структуры в результате тепловой денатурации приводит к потере каталитических свойств. Наличие у ферментов высокой молекулярной массы обусловливает их неспособность к диализу , а присутствие в молекулах заряженных функциональных групп - подвижность в электрическом поле . Как и другие белки, ферменты образуют коллоидные растворы, из которых могут осаждаться ацетоном, спиртом, сульфатом аммония - веществами, способствующими разрушению гидратной оболочки и нейтрализации электрического заряда.

Раздел 7.2

Основные свойства ферментов. Олигодинамичность и обратимость действия ферментов. Влияние концентрации фермента и субстрата, температуры и рН среды на скорость ферментативной реакции.

7.2.1. Белковая природа ферментов обусловливает появление у них ряда свойств, в целом нехарактерных для неорганических катализаторов: олигодинамичность, специфичность, зависимость скорости реакции от температуры, рН среды, концентрации фермента и субстрата, присутствия активаторов и ингибиторов.

Под олигодинамичностью ферментов понимают высокую эффективность действия в очень малых количествах. Такая высокая эффективность объясняется тем, что молекулы ферментов в процессе своей каталитической деятельности непрерывно регенерируют. Типичная молекула фермента может регенерировать миллионы раз в минуту. Надо сказать, что и неорганические катализаторы также способны ускорять превращение такого количества веществ, которое во много раз превышает их собственную массу. Но ни один неорганический катализатор не может сравниться с ферментами по эффективности действия.

Примером может служить фермент реннин, вырабатываемый слизистой оболочкой желудка жвачных животных. Одна молекула его за 10 минут при 37°С способна вызывать коагуляцию (створаживание) порядка миллиона молекул казеиногена молока.

Другой пример высокой эффективности ферментов даёт каталаза. Одна молекула этого фермента при 0°С расщепляет за секунду около 50 000 молекул пероксида водорода:

2 Н2 О2 2 Н2 О + О2

Действие каталазы на пероксид водорода заключается в изменении величины энергии активации этой реакции приблизительно от 75 кДж/моль без катализатора до 21 кДж/моль в присутствии фермента. Если же в качестве катализатора этой реакции используется коллоидная платина, то энергия активации составляет всего 50 кДж/моль.

7.2.2. При изучении влияния какого-либо фактора на скорость ферментативной реакции все прочие факторы должны оставаться неизменными и по возможности иметь оптимальное значение.

Мерой скорости ферментативных реакций служит количество субстрата, подвергшегося превращению в единицу времени, или количество образовавшегося продукта. Изменение скорости проводят на начальной стадии реакции, когда продукт ещё практически отсутствует, и обратная реакция не идёт. Кроме того, на начальной стадии реакции концентрация субстрата соответствует его исходному количеству.

7.2.3. Зависимость скорости ферментативной реакции (V ) от концентрации фермента [Е] (рисунок 7.3). При высокой концентрации субстрата (многократно превышающей концентрацию фермента) и при постоянстве других факторовскорость ферментативной реакции пропорциональна концентрации фермента. Поэтому зная скорость реакции, катализируемой ферментом, можно сделать вывод о его количестве в исследуемом материале.

Рисунок 7.3. Зависимость скорости ферментативной реакции от концентрации фермента

7.2.4. Зависимость скорости реакции от концентрации субстрата [S] . График зависимости имеет вид гиперболы (рисунок 7.4). При постоянной концентрации фермента скорость катализируемой реакции возрастает с увеличением концентрации субстрата до максимальной величины Vmax, после чего остаётся постоянной. Это следует объяснить тем, что при высоких концентрациях субстрата все активные центры молекул фермента оказываются связанными с молекулами субстрата. Любое избыточное количество субстрата может соединиться с ферментом лишь после того, как образуется продукт реакции и освободится активный центр.

Рисунок 7.4. Зависимость скорости ферментативной реакции от концентрации субстрата.

Зависимость скорости реакции от концентрации субстрата может быть выражена уравнением Михаэлиса — Ментен:

,

где V — скорость реакции при концентрации субстрата [S] , Vmax —максимальная скорость и KM —константа Михаэлиса.

Константа Михаэлиса равна концентрации субстрата, при которой скорость реакции составляет половину максимальной. Определение KM и Vmax имеет важное практическое значение, так как позволяет количественно описать большинство ферментативных реакций, включая реакции с участием двух и более субстратов. Различные химические вещества, изменяющие активность ферментов, по-разному воздействуют на величины Vmax и KM .

7.2.5. Зависимость скорости реакции от t - температуры, при которой протекает реакция (рисунок 7.5), имеет сложный характер. Значение температуры, при котором скорость реакции максимальна, представляет собой температурный оптимум фермента. Температурный оптимум большинства ферментов организма человека приблизительно равен 40°С. Для большинства ферментов оптимальная температура равна или выше тойц температуры, при которой находятся клетки.

Рисунок 7.5. Зависимость скорости ферментативной реакции от температуры.

При более низких температурах (0° — 40°С) скорость реакции увеличивается с ростом температуры. При повышении температуры на 10°С скорость ферментативной реакции удваивается (температурный коэффициент Q10 равен 2). Повышение скорости реакции объясняется увеличением кинетической энергии молекул. При дальнейшем повышении температуры происходит разрыв связей, поддерживающих вторичную и третичную структуру фермента, то есть тепловая денатурация. Это сопровождается постепенной потерей каталитической активности.

7.2.6. Зависимость скорости реакции от рН среды (рисунок 7.6). При постоянной температуре фермент работает наиболее эффективно в узком интервале рН. Значение рН, при котором скорость реакции максимальна, представляет собой оптимум рН фермента. У большинства ферментов организма человека оптимум рН находится в пределах рН 6 - 8, но есть ферменты, которые активны при значениях рН, лежащих за пределами этого интервала (например, пепсин, наиболее активный при рН 1,5 - 2,5).

Изменение рН как в кислую, так и в щелочную сторону от оптимума приводит к изменению степени ионизации кислых и основных групп аминокислот, входящих в состав фермента (например, СООН-группы аспартата и глутамата, NН2 -группы лизина и т.д.). Это вызывает изменение конформации фермента, в результате чего изменяется пространственная структура активного центра и снижение его сродства к субстрату. Кроме того, при экстремальных значениях рН происходит денатурация фермента и его инактивация.

Рисунок 7.6. Зависимость скорости ферментативной реакции от рН среды.

Следует отметить, что свойственный ферменту оптимум рН не всегда совпадает с рН его непосредственного внутриклеточного окружения. Это позволяет предположить, что среда, в которой находится фермент, в какой-то мере регулирует его активность.

7.2.7. Зависимость скорости реакции от присутствия активаторов и ингибиторов . Активаторы повышают скорость ферментативной реакции. Ингибиторы понижают скорость ферментативной реакции.

В качестве активаторов ферментов могут выступать неорганические ионы. Предполагают, что эти ионы заставляют молекулы фермента или субстрата принять конформацию, способствующую образованию фермент-субстратного комплекса. Тем самым увеличивается вероятность взаимодействия фермента и субстрата, а следовательно и скорость реакции, катализируемой ферментом. Так, например, активность амилазы слюны повышается в присутствии хлорид-ионов.

Раздел 7.3

Специфичность действия ферментов (абсолютная, относительная и стереохимическая).

7.3.1. Важным свойством, отличающим ферменты от неорганических катализаторов, является специфичность действия . Как известно, структура активного центра фермента комплементарна структуре его субстрата. Поэтому фермент из всех имеющихся в клетке веществ выбирает и присоединяет только свой субстрат. Для ферментов характерна специфичность не только по отношению к субстрату, но и в отношении пути превращения субстрата.

У ферментов различают абсолютную, относительную и стереохимическую специфичность.

7.3.2. Абсолютная специфичность - избирательная способность фермента катализировать только единственное из возможных превращений одного субстрата. Это можно объяснить конформационной и электростатической комплементарностью молекул субстрата и фермента.

Например, фермент аргиназа катализирует только гидролиз аминокислоты аргинина, фермент уреаза - только расщепление мочевины и не действуют на другие субстраты.

7.3.3. Относительная специфичность - избирательная способность фермента катализировать однотипные превращения сходных по строению субстратов.

Такие ферменты оказывают воздействие на одинаковые функциональные группы или на один и тот же тип связей в молекулах субстратов. Так, например, разные гидролитические ферменты действуют на определённый тип связей:

  • амилаза - на гликозидные связи;
  • пепсин и трипсин - на пептидные связи;
  • липаза и фосфолипаза - на сложноэфирные связи.

Действие этих ферментов распространяется на большое число субстратов, что позволяет организму обойтись малым количеством пищеварительных ферментов - иначе их потребовалось бы намного больше.

7.3.4. Стереохимическая (оптическая) специфичность - избирательная способность фермента катализировать превращение только одного из возможных пространственных изомеров субстрата.

Так, большинство ферментов млекопитающих катализирует превращение толькл L-изомеров аминокислот, но не D-изомеров. ферменты, участвующие в обмене моносахаридов, наоборот, катализируют превращение только D-, но не L-фосфосахаров. Гликозидазы специфичны не только к моносахаридному фрагменту, но и характеру гликозидной связи. Например, α-амилаза расщепляет α-1,4-гликозидные связи в молекуле крахмала, но не действует на α-1,2-гликозидные связи в молекуле сахарозы.

Раздел 7.4

Основные принципы, положенные в основу современной классификации и номенклатуры ферментов.


7.4.1. В настоящее время известно более двух тысяч химических реакций, катализируемых ферментами, и число это непрерывно возрастает. Чтобы ориентироваться в таком множестве превращений. возникла настоятельная необходимость в систематизированной классификации и номенклатуре, при помощи которой любой фермент можно было бы точно идентифицировать. Номенклатура, которой пользовались до середины XX века, была весьма далека от совершенства. Исследователи, открывая новый фермент, давали ему название по своему усмотрению, что неизбежно вело к путанице и всевозможным противоречиям. Некоторые названия оказались ошибочными, другие ничего не говорили о природе катализируемой реакции. Учёные разных школ часто употребляли разные названия для одного и того же фермента или, наоборот, одно и то же название для нескольких разных ферментов.

Было решено разработать рациональную международную классификацию и номенклатуру ферментов, которой могли бы пользоваться биохимики всех стран. С этой целью при Международном союзе биохимии и молекулярной биологии (International Union of Biochemistry and Molecular Biology, IUВMB) была создана Комиссия по ферментам, предложившая в 1964 году основные принципы такой классификации и номенклатуры. Она постоянно совершенствуется и дополняется, в настоящее время действует уже шестая редакция этой номенклатуры (1992 год), к которой ежегодно выходят дополнения.

7.4.2. В основу классификации положен важнейший признак, по которому один фермент отличается от другого — это катализируемая им реакция. Число типов химических реакций сравнительно невелико, что позволило разделить все известные в настоящее время ферменты на 6 важнейших классов, в зависимости от типа катализируемой реакции. Такими классами являются:

  • оксидоредуктазы (окислительно-восстановительные реакции);
  • трансферазы (перенос функциональных групп);
  • гидролазы (реакции расщепления с участием воды);
  • лиазы (разрыв связей без участия воды);
  • изомеразы (изомерные превращения);
  • лигазы (синтез с затратой молекул АТФ).

7.4.3. Ферменты каждого класса делят на подклассы, руководствуясь строением субстратов. В подклассы объединяют ферменты, действующие на сходно построенные субстраты. Подклассы разбивают на подподклассы, в которых ещё строже уточняют структуру химических групп, отличающих субстраты друг от друга. Внутри подподклассов перечисляют индивидуальные ферменты. Все подразделения классификации имеют свои номера. Таким образом, любой фермент получает свой уникальный кодовый номер, состоящий из четырёх чисел, разделённых точками. Первое число обозначает класс, второе - подкласс, третье - подподкласс, четвёртое - номер фермента в пределах подподкласса. Например, фермент α-амилаза, расщепляющая крахмал, обозначается как 3.2.1.1, где:
3 — тип реакции (гидролиз);
2 — тип связи в субстрате (гликозидная);
1 — разновидность связи (О-гликозидная);
1 — номер фермента в подподклассе

Вышеописанный десятичный способ нумерации имеет одно важное преимущество: он позволяет обойти главное неудобство сквозной нумерации ферментов, а именно: необходимость при включении в список вновь открытого фермента изменять номера всех последующих. Новый фермент может быть помещён в конце соответствующего подподкласса без нарушения всей остальной нумерации. Точно так же при выделении новых классов, подклассов и подподклассов их можно добавлять без нарушения порядка нумерации ранее установленных подразделений. Если после получения новой информации возникает необходимость изменить номера некоторым ферментам, прежние номера не присваивают новым ферментам, чтобы избежать недоразумений.

Говоря о классификации ферментов, следует также отметить, что ферменты классифицируются не как индивидуальные вещества, а как катализаторы определённых химических превращений. Ферменты, выделенные из разных биологических источников и катализирующие идентичные реакции, могут существенно отличаться по своей первичной структуре. Тем не менее в классификационном списке все они фигурируют под одним и тем же кодовым номером.

Итак, знание кодового номера фермента позволяет:

  • устранить неоднозначности, если разные исследователи используют одно и то же название для различных ферментов;
  • сделать поиск информации в литературных базах данных более эффективным;
  • получить в других базах данных дополнительную информацию о последовательности аминокислот, пространственной структуре фермента, генах, кодирующих ферментные белки.

аздел 7.5

Понятие о систематическом и рабочем названии фермента, их использование.

7.5.1. Система классификации, разработанная Комиссией по ферментам, включает также и вновь созданную номенклатуру ферментов, которая строится по специальным принципам. Согласно рекомендациям IUBMB, ферменты получают два рода названий: систематическое и рабочее (рекомендуемое).

7.5.2. Систематическое название составляется из двух частей. Первая часть содержит название субстрата или субстратов, часто — наименование кофермента, вторая часть указывает на природу катализируемой реакции и включает название класса, к которому относится данный фермент. При необходимости приводится дополнительная информация о реакции в скобках после второй части названия. Систематическое название присваивается только тем ферментам, каталитическое действие которых полностью изучено.

Например, систематическое название α-амилазы — 1,4-α-D-глюкан-глюканогидролаза . Конечно, такое название очень неудобно для запоминания и произнесения. Поэтому наряду с систематическими Комиссия по ферментам IUBMB даёт рекомендует использовать рабочие (упрощённые) названия ферментов.

7.5.3. Рабочее название фермента должно быть достаточно коротким для употребления. В качестве рабочего названия в ряде случаев может быть использовано тривиальное название, если оно не является ошибочным или двусмысленным. В других случаях оно строится на тех же общих принципах, что и систематическое название, но с минимальной детализацией. Конкретные примеры систематических и рабочих названий ферментов приводятся в следующем разделе данной темы курса. В научных публикациях при первом упоминании о ферменте принято указывать его систематическое название и кодовый номер, а в дальнейшем пользоваться его рабочим названием.

7.5.4. Основные правила построения систематических и рабочих названий разных классов ферментов:

Оксидоредуктазы


Систематическое название
ферментов этого класса строится по схеме донор: акцептор - оксидоредуктаза. Согласно тривиальной номенклатуре, оксидоредуктазы, отщепляющие атомы водорода или электроны и переносящие их на любой акцептор, кроме кислорода, называются дегидрогеназами. Оксидоредуктазы, использующие кислород в качестве акцептора атомов водорода или электронов, называются оксидазами. Некоторые ферменты, которым свойственно преимущественно восстанавливающее действие, носят названиередуктаз. Все перечисленные наименования могут быть использованы для построения рабочего названия оксидоредуктаз.

Трансферазы


Систематическое название
ферментов, ускоряющих такие реакции, составляют по форме донор:акцептор (транспортируемая группа) трансфераза. В рабочем названии обычно указывается только один специфический субстрат или продукт наряду с названием транспортируемой группировки.

Гидролазы


Систематическое название
составляется по форме субстрат-гидролаза. У гидролаз, специфически отщепляющих определённую группу, эта группа может быть указана в виде префикса. Рабочее название чаще всего составляется из названия гидролизуемого субстрата с добавлением окончания -аза. Следует, однако, отметить, что вследствие достаточно сложного и зачастую до конца не выявленного характера специфичности многих гидролаз не всегда удаётся дать им систематическое название. В этих случаях рекомендовано использовать эмпирические названия, присвоенные им при первом описании. Так, не имеют систематического названия такие ферменты, как пепсин, папаин, тромбин.

Лиазы


Систематическое название
ферментов строится по схеме: субстрат-отщепляемая группа-лиаза. Чтобы уточнить, какая группа отщепляется, используются префиксы "карбокси-", "аммиак", "гидро-" и т.д. В качестве рабочих названий ферментов сохраняются тривиальные названия типа "декарбоксилаза", "альдолаза", "дегидратаза", "десульфгидраза". Лиазы делятся на подклассы в зависимости от характера разрываемых связей

Изомеразы



Систематическое название
ферментов включает название субстрата и слово изомераза, которому предшествует указание типа реакции изомеризации. Рабочие названия подобны (с некоторыми упрощениями) систематическим названиям.

Лигазы


Систематическое название
образуется из названий соединяемых субстратов в сочетании со словомлигаза. В скобках указывается продукт, образующийся в результате гидролиза нуклеозидтрифосфата (например, АДФ или АМФ). Рабочее название ферментов этого класса составляется, как правило, из названия продукта реакции в сочетании со словом синтетаза.

Рекомендация. Знакомясь в последующем с различными ферментативными реакциями, всегда анализируйте сущность изменений, происходящих в субстратах, и пытайтесь определить по крайней мере класс фермента, катализирующего реакцию. Анализируйте также названия ферментов и соотносите их с процессами, происходящими в реакциях. Это облегчит запоминание названий ферментов и катализируемых ими превращение и позволит больше времени уделить уяснению биологической роли изучаемых процессов.

Раздел 7.6.1

ОКСИДОРЕДУКТАЗЫ.

К классу оксидоредуктаз относят ферменты, катализирующие окислительно-восстановительные реакции. Общая схема их может быть представлена следующим образом:

где AH2 —донор водорода, B — акцептор водорода. В живых организмах окисление осуществляется преимущественно путём отщепления атомов водорода или электронов от субстратов-доноров. Акцепторами атомов водорода или электронов могут быть различные вещества - коферменты (НАД, НАДФ, ФАД, ФМН, глутатион, липоевая кислота, убихинон), цитохромы. железосерные белки и кислород.

Подклассы оксидоредуктаз формируются в зависимости от природы функциональной группы донора водорода (электронов). Всего выделяют 19 подклассов. Основными из них являются следующие:

Оксидоредуктазы, действующие на СН-ОН-группу доноров. Ферменты, относящиеся к этому подклассу, окисляют спиртовые группы до альдегидных или кетонных групп. В качестве примера можно привести фермент алкогольдегидрогеназу (алкоголь:НАД-оксидоредуктаза; КФ 1.1.1.1). участвующую в метаболизме этанола в тканях:

Кроме окисления спиртов, ферменты этого подкласса участвуют в дегидрировании оксикислот (молочной, яблочной, изолимонной), моносахаридов и других соединений, содержащих гидроксильные группы.

Оксидоредуктазы, действующие на альдегидную или кетонную группу доноров. Эти ферменты окисляют альдегиды и кетоны до карбоновых кислот. К примеру, представитель данного подкласса - глицеральдегид-3-фосфатдегидрогеназа (D-глицеральдегид-3-фосфат:НАД-оксидоредуктаза (фосфорилирующая), КФ 1.2.1.12) - катализирует одну из промежуточных реакций распада глюкозы:

Важно отметить, что продукт этой реакции содержит богатую энергией фосфатную связь в 1-ом положении. Остаток фосфорной кислоты, образующий эту связь, может быть перенесён от 1,3-дифосфоглицерата на АДФ с образованием АТФ (см. далее).

Оксидоредуктазы, действующие на СН-СН-группу доноров. В результате катализируемых ими реакций СН-СН-группы превращаются в С=С-группы. то есть происходит образование ненасыщенных соединений из насыщенных. Например, фермент цикла трикарбоновых кислот сукцинатдегидрогеназа (сукцинат:акцептор - оксидоредуктаза, КФ 1.3.99.1) ускоряет окисление янтарной кислоты с образованием ненасыщенной фумаровой кислоты:

Оксидоредуктазы, действующие на CH-NH2 -группу доноров. Эти ферменты катализируют окислительное дезаминирование аминокислот и биогенных аминов. Амины при этом превращаются в альдегиды или кетоны, аминокислоты - в кетокислоты и выделяется аммиак. Так, глутаматдегидрогеназа (L-глутамат:НАД(Ф) - оксидоредуктаза (дезаминирующая), КФ 1.4.1.3) принимает участие в следующем превращении глутамата:

Оксидоредуктазы, действующие на серосодержащие группы доноров, катализируют окисление тиоловых (сульфгидрильных) групп до дисульфидных, а сульфитов - до сульфатов. Примером фермента является дигидролипоилдегидрогеназа (КФ 1.8.1.4), катализирующая одну из промежуточных реакций окислительного декарбоксилирования пирувата:

Оксидоредуктазы, действующие на пероксид водорода в качестве акцептора, сравнительно немногочисленны и объединены в отдельный подкласс, известный также под тривиальным названием пероксидазы. Примером фермента является глутатионпероксидаза (глутатион:Н2 О2 - оксидоредуктаза. КФ 1.11.1.9), участвующая в инактивации пероксида водорода в эритроцитах, печени и некоторых других тканях:

Оксидоредуктазы, действующие на пару доноров с включением молекулярного кислорода, или монооксигеназы - ферменты, катализирующие окисление органических соединений молекулярным кислородом, приводящее к включению одного из атомов кислорода в молекулы этих соединений. При этом второй атом кислорода включается в молекулу воды. Так реакция превращения фенилаланина в тирозин катализируется фенилаланин-4-монооксигеназой (КФ 1.14.16.1):

У некоторых людей генетический дефект этого фермента служит причиной заболевания, которое носит название фенилкетонурии.

К монооксигеназам относится также фермент, известный под названием цитохром Р450 (КФ 1.14.14.1) Он содержится, главным образом, в клетках печени и осуществляет гидроксилирование чуждых организму липофильных соединений, образующихся в качестве побочных продуктов реакций или попадающих в организм извне. Например, индол, образующийся из триптофана в результате деятельности микроорганизмов кишечника, подвергается в печени гидроксилированию по следующей схеме:

Появление гидроксильной группы повышает гидрофильность веществ и облегчает их последующий вывод из организма. Кроме того, цитохром Р450 принимает участие в отдельных этапах превращения холестерина и стероидных гормонов. Наличие у живых организмов высокоэффективной системы цитохрома Р450 приводит в ряде случаев к нежелательным практическим следствиям: сокращает время пребывания в организме человека лекарственных препаратов и тем самым снижает их терапевтический эффект.

Оксидоредуктазы, действующие на один донор с включением молекулярного кислорода, или диоксигеназы, катализируют превращения, в ходе которых оба атома молекулы О2 включаются в состав окисляемого субстрата. Например, в процессе катаболизма фенилаланина и тирозина происходит образование из гомогентизиновой кислоты малеилацетоацетата, в состав которого включаются оба атома кислорода:

Фермент, катализирующий эту реакцию, называется гомогентизат-1,2-диоксигеназой (КФ 1.13.11.5). В ряде случаев встречается врождённый дефицит этого фермента, что приводит к развитию заболевания, называемого алкаптонурией.

Раздел 7.6.2

ТРАНСФЕРАЗЫ.

Трансферазы - класс ферментов, катализирующих перенос функциональных групп от одного соединения к другому. В общем виде эти превращения можно записать:

где Х - переносимая функциональная группа. AX - донор группировки, В - акцептор. Подразделение на подклассы зависит от природы переносимых группировок.

Трансферазы, переносящие одноуглеродные фрагменты. К этому подклассу относятся ферменты, ускоряющие перенос метильных (—CH3 ), метиленовых (—СН2 —), метенильных (—СН=), формильных и родственных им групп. Так, при участии гуанидинацетат-метилтрансферазы (S-аденозилметионингуанидинацетат-метилтрансфераза, КФ 2.1.1.2) происходит синтез биологически активного вещества креатина:

Трансферазы, переносящие остатки карбоновых кислот (ацилтрансферазы). Они катализируют разнообразные химические процессы связанные с переносом остатков различных кислот (уксусной, пальмитиновой и др.) преимущественно от тиоэфиров коэнзима А на различные акцепторы. Примером реакции трансацетилирования может быть образование медиатора ацетилхолина при участии холин-ацетилтрансферазы (ацетил-КоА:холин-О-ацетилтрансфераза, КФ 2.3.1.6):

Трансферазы, переносящие гликозильные остатки (гликозилтрансфсразы), катализируют транспорт гликозильных остатков из молекул фосфорных эфиров к молекулам моносахаридов, полисахаридов и других веществ. Эти ферменты, в частности, играют основную роль в синтезе гликогена и крахмала, а также в первой фазе их деструкции. Ещё один фермент этого подкласса - УДФ-глюкуронилтрансфераза (УДФ-глюкуронат-глюкуронил-трансфераза (неспецифичная к акцептору), КФ 2.4.1.17) - участвует в процессах обезвреживания эндогенных и чужеродных токсических веществ в печени:

Трансферазы, переносящие азотистые группы. В этот подкласс входят аминотрансферазы, ускоряющие перенос α-аминогруппы аминокислот к α-углеродному атому кетокислот. Наиболее важным из этих ферментов является аланинаминотрансфераза (L-аланин:2-оксоглутарат-аминотрансфераза, КФ 2.6.1.2). катализирующая реакцию:

Трансферазы, переносящие фосфатные группы (фосфотрансферазы). Эта группа ферментов катализирует биохимические процессы, связанные с транспортом остатков фосфорной кислоты на различные субстраты. Указанные процессы имеют важное значение для жизнедеятельности организма, так как обеспечивают превращение ряда веществ в органические фосфоэфиры, обладающие высокой химической активностью и легко вступающие в последующие реакции. Фосфотрансферазы, использующие в качестве донора фосфата АТФ, принято называть киназами . Широко распространённым ферментом является гексокиназа (ATФ:D-гексоза-6-фосфотрансфераза. КФ 2.7.1.1.), ускоряющая перенос фосфатной группы с АТФ на моносахариды:

В некоторых случаях возможен и обратный перенос фосфатной группы с субстрата на АДФ с образованием АТФ. Так, фермент фосфоглицераткиназа (АТФ:D-3-фосфоглицерат-1-фосфотрансфераза, КФ 2.7.2.3) осуществляет превращение упомянутого ранее (см. "Оксидоредуктазы") 1.3-дифосфоглицерата:

Подобные реакции фосфорилирования АДФ с образованием АТФ, сопряжённые с превращением субстрата (а не с переносом электронов в дыхательной цепи), получили название реакций субстратного фосфорилирования. Роль этих реакций в клетке значительно возрастает при недостатке кислорода в тканях.

Раздел 7.6.3

ГИДРОЛАЗЫ.

Гидролазы - класс ферментов, катализирующих реакции расщепления органических соединений при участии воды (реакции гидролиза). Эти реакции протекают по следующей схеме:

где А-В - сложное соединение, А-Н и В-ОН - продукты его гидролиза. Реакции этого типа активно протекают в организме; они идут с выделением энергии и, как правило, необратимы.

Подклассы гидролаз формируются в зависимости от типа гидролизуемой связи. Наиболее важными являются следующие подклассы:

Гидролазы, действующие на сложные эфиры (или эстеразы) гидролизуют сложные эфиры карбоновой, фосфорной, серной и других кислот. Широко распространённым ферментом этого подкласса является триацилглицероллипаза (гидролаза эфиров глицерола, КФ 3.1.1.3). ускоряющая гидролиз ацилглицеролов:

Другие представители эстераз расщепляют сложноэфирные связи в ацетилхолине (ацетилхолинэстераза), фосфолипидах (фосфолипазы), нуклеиновых кислотах (нуклеазы), фосфоорганических эфирах (фосфатазы).

Гидролазы, действующие на гликозидные связи (гликозидазы) ускоряют реакции гидролиза олиго- и полисахаридов, а также других соединений, содержащих моносахаридные остатки (например, нуклеозидов). Характерным представителем является сахараза (β-D-фруктофуранозид-фруктогидролаза, КФ 3.2.1.26). катализирующая расщепление сахарозы:

Гидролазы, действующие на пептидные связи (пептидазы), катализируют реакции гидролиза пептидных связей в белках и пептидах. К этой группе относятся пепсин, трипсин, химотрипсин, катепсин и другие протеолитические ферменты. Гидролиз пептидных связей происходит по следующей схеме:

Гидролазы, действующие на C-N-связи, отличающиеся от пептидных, - ферменты, ускоряющие гидролиз амидов органических кислот. Представитель этого подкласса - глутаминаза (L-глутамил-амидогидролаза, КФ 3.5.1.2) - участвует в поддержании кислотно-основного состояния организма, катализируя в почках гидролиз глутамина:

Раздел 7.6.4

ЛИАЗЫ.

Лиазы - класс ферментов, катализирующих негидролитические реакции расщепления субстратов с образованием двойных связей или, наоборот, присоединения по месту разрыва двойной связи. Общая схема этих реакций:

где А—В - субстрат, А и В - продукты реакции. В результате таких реакций часто выделяются простые вещества, например, СО2 , NH3 ,H2 О.

Углерод-углерод-лиазы катализируют разрыв связи между двумя атомами углерода. Среди них наибольшее значение имеют карбокси-лиазы (декарбоксилазы), под влиянием которых осущест-вляется декарбоксилирование a-кето- и аминокислот, лиазы кетокислот , к которым относится цитратсинтаза, альдегид-лиазы (альдолазы). К последним относитсяфруктозодифосфатальдолаза (фруктозо-1,6-дифосфат-D-глицеральдегид-3-фосфат-лиаза, КФ 4.1.2.13), катализирующая реакцию:

Углерод-кислород-лиазы катализируют разрыв связи между атомами углерода и кислорода. В этот подкласс входят прежде всего гидро-лиазы, участвующие в реакциях дегидратации и гидратации. Примером может служить сериндегидратаза (L-серин-гидро-лиаза (дезаминирующая), КФ 4.2.1.3), осуществляющая превращение:

Иногда за основу рабочего названия может быть принята обратная реакция с применением термина "гидратаза". Так, для фермента цикла трикарбоновых кислот L-малат-гидро-лиазы (КФ 4.2.1.2) рекомендовано название "фумаратгидратаза":

Углерод-азот-лиазы участвуют в отщеплении азотсодержащих групп. Представителем этого подкласса является гистидин-аммиак-лиаза (L-гистидин-аммиак-лиаза, КФ 4.3.1.3), участвующая в дезаминировании гистидина:

Углерод-сера-лиазы катализируют отщепление сульфгидрильных групп. К этому подклассу относятся десульфгидразы серу содержащих аминокислот, например,цистеиндесульфгидраза (L-цистеин-сероводород-лиаза (дезаминирующая), КФ 4,4.1.1).

Раздел 7.6.5

ИЗОМЕРАЗЫ.

Изомеразы - класс ферментов, ускоряющих процессы внутримолекулярных превращений с образованием изомеров. Схематически реакции такого типа могут быть представлены следующим образом:

где А и А" - вещества-изомеры.

Изомеразы - сравнительно немногочисленный класс ферментов, он подразделяется на следующие подклассы в зависимости от типа катализируемой реакции изомеризации:

Рацемазы и эпимеразы катализируют взаимопревращение изомеров, содержащих асимметрические атомы углерода. Рацемазами называются ферменты, действующие на субстраты с одним асимметрическим атомом, например, превращающие L-аминокислоты в D-аминокислоты. Одним из таких ферментов являетсяaлaнинрацемаза (аланин-рацемаза. КФ 5.1.1.1), катализирующая реакцию:


Эпимеразами называются ферменты, действующие на субстраты с несколькими асимметрическими атомами углерода. К таким ферментам относится УДФ-глюкозо-эпимераза (УДФ-глюкоза-4-эпимераза, КФ 5.1.3.2). участвующая в процессах взаимопревращения моносахаридов:

Цис-транс-изомеразы - ферменты, вызывающие изменение геометрической конфигурации относительно двойной связи. Примером такого фермента являетсямалеилацетоацетатизомераза (малеилацетоацетат-цис-транс-изомераза, КФ 5.2.1.2), участвующая в катаболизме фенилаланина и тирозина и переводящая малеилацетоацетат (см. 4.6.1) в фумарилацетоацетат:

Внутримолекулярные оксидоредуктазы - изомеразы, катализирующие взаимопревращения альдоз и кетоз. При этом происходит окисление СН-ОН-группы с одновременным восстановлением соседней С=О-группы. Так, триозофосфатизомераза (D-глицеральдегид-3-фосфат-кетол-изомераза, КФ 5.3.1.1) катализирует одну из реакций углеводного обмена:

К изомеразам относятся также внутримолекулярные трансферазы, осуществляющие перенос одной группы с одной части молекулы субстрата на другую часть той же молекулы, ивнутримолекулярные лиазы, катализирующие реакции дециклизации, а также превращения одного типа кольца в другой.

Следует подчеркнуть, что не все биохимические процессы. результатом которых является изомеризация, катализируются изомеразами. Так, изомеризация лимонной кислоты в изопимонную происходит при участии фермента аконитатгидратазы (цитрат (изоцитрат)-гидро-лиаза, КФ 4.2.1.3), катализирующей реакции дегидратации-гидратации с промежуточным образованием цис-аконитовой кислоты:

Раздел 7.6.6

ЛИГАЗЫ.

Лигазы - класс ферментов, катализирующих синтез органических соединений из активированных за счет распада АТФ (или ГТФ, УТФ, ЦТФ) исходных веществ. Для ферментов этого класса сохраняется также тривиальное название синтетазы. В связи с этим, согласно рекомендациям IUBMB, термин "синтетазы" не должен применяться для ферментов, в действии которых не участвуют нуклеозидтрифосфаты. Реакции, катализируемые лигазами (синтетазами), протекают по схеме:

,

где А и В - взаимодействующие вещества; А—В - вещество, образующееся в результате взаимодействия.

Поскольку в результате действия этих ферментов образуются новые химические связи, подклассы VI класса формируются в зависимости от характера вновь образованных связей.

Лигазы, образующие связи углерод-кислород. К ним относит-ся группа ферментов, известных как аминокислота-тРНК-лигазы (аминоацил-тРНК-синтетазы). которые катализируют реакции взаимодействия аминокислот и соответствующих транспортных РНК. В этих реакциях образуются активные формы аминокислот, способные участвовать в процессе синтеза белка на рибосомах. Примером фермента может служить тирозил-тРНК-синтетаза (L-тирозин:тРНК-лигаза (АМФ-образующая), КФ 6.1.1.1), участвующая в реакции:

Лигазы, образующие связи углерод-сера. Этот подкласс представлен в первую очередь ферментами, катализирующими образо-вание тиоэфиров жирных кислот с коэнзимом А. При участии этих ферментов синтезируются ацил-КоА - активные формы жирных кислот, способные вступать в различные реакции биосинтеза и распада. Рассмотрим одну из реакций активации жирных кислот, протекающую в присутствии фермента ацил-КоА-синтетазы (карбоновая кислота:коэнзим А-лигаза (АМФ-образующая). КФ 6.2.1.2):

Лигазы, образующие связи углерод-азот, катализируют мно-гочисленные реакции введения азотсодержащих групп в органические соединения. Примером может служитьглутаминсинтетаза (L-глутамин:аммиак-γ-лигаза (АДФ-образующая), КФ 6.3.1.2). участвующая в обезвреживании токсичного продукта обмена - аммиака - в реакции с глутаминовой кислотой:

Лигазы, образующие связи углерод-углерод. Из этих ферментов наиболее изучены карбоксилазы, обеспечивающие карбоксилирование ряда соединений, в результате чего происходит удлиннение углеродных цепей. Важнейшим представителем данного класса является пируваткарбоксилаза (пируват:СО2 -лигаза (АДФ-образующая), КФ 6.4.1.1), ускоряющая реакцию образования оксалоацетата - ключевого соединения цикла трикарбоновых кислот и биосинтеза углеводов:

Напомним, что реакции с участием АТФ катализируются не только ферментами VI класса, но и некоторыми ферментами II класса (фосфотрансферазами или киназами). Важно уметь отличать эти типы реакций. Их различие заключается в том, что в трансферазных реакциях АТФ является донором фосфатных групп , поэтому в результате этих реакцию не происходит выделения Н3 РО4 (примеры см. выше). Наоборот, в синтетазных реакциях АТФ служит источником энергии , выделяемой при её гидролизе, поэтому одним из продуктов такой реакции будет являться неорганический орто- или пирофосфат.

Раздел 7.7.1

Правила работы с ферментами

Ферменты, как все белки, являются относительно неустойчивыми веществами. Они легко подвергаются денатурации и инактивации. Поэтому при работе с ними необходимо выполнять определенные условия.

  • При хранении объекта изучения свыше нескольких часов при комнатной температуре фермент почти полностью инактивируется. Поэтому анализ определения активности фермента следует проводить в возможно короткие сроки. При необходимости длительное хранение возможно, если раствор фермента высушивают из замороженного состояния в высоком вакууме (лиофильная сушка). В этом случае фермент почти полностью сохраняет активность при дальнейшем его хранении при комнатной температуре. Некоторые ферменты хорошо сохраняются в концентрированных растворах солей, например, в насыщенном сульфате аммония (процесс высаливания). При надобности осадок фермента можно отцентрифугировать и растворить в физиологическом растворе или соответствующем буфере. Если необходимо, от избытка соли можно избавиться диализом.
  • Необходимо помнить о чувствительности ферментов к колебаниям рН среды. За небольшим исключением большинство ферментов инактивируется в растворах с рН ниже 5 или выше 9, а оптимум действия ферментов появляется в зоне нескольких единиц или десятых долей единицы значения рН. Определение рН буферных растворов, используемых при работе с ферментами, рекомендуется проводить очень точно с помощью рН-метра.
  • Ферменты легко разрушаются сильнодействующими реагентами: кислотами, щелочами, окислителями, солями тяжелых металлов. Необходимо работать с химически чистыми реактивами и бидистиллированной водой, т. к. даже небольшое загрязнение реактивов, особенно примесью металлов, которые могут действовать как модуляторы, приводит к изменению активности фермента.
  • При работе с ферментами как нигде обязательно строгое соблюдение стандартизации условий исследования: точное выдерживание температурного и временного режимов, использование реактивов из одной партии, а при смене реактивов надо снова откалибровать получаемые данные. Если развивающаяся окраска в цветной реакции неустойчива во времени, необходимо строго соблюдать сроки фотометрирования.
  • Рекомендуется работать в условиях достаточной степени насыщения фермента субстратом, так как это обстоятельство существенно сказывается на конечном результате, недостаток субстрата нивелирует различия между вариантами.
  • При работе с ферментами необходимо учитывать органоспецифичный изоферментный спектр. Часто такая специфичность затрагивает условия действия энзима. На ход реакции может повлиять различное сродство к субстрату, иная чувствительность к рН, свойственные изоэнзимам того или иного органа или ткани. Переносить метод исследования активности фермента с одного объекта на другой (например, с сыворотки на ткань или с одного органа на другой) нужно крайне осторожно, с учетом всех известных данных о ферменте и его множественных формах, а также с тщательной проверкой результатов.

Для широкого внедрения различных биохимических (ферментативных) реакций вводится автоматизация наиболее общепризнанных и необходимых анализов, а также унификация и стандартизация лабораторных тестов. Это рационально и необходимо как для повышения точности, качества проведения проб, так и для сравнения данных, которые получены в разных лабораториях.

Общепринятым является и обязательное параллельное исследование, наряду с изучаемой патологией, физиологического контроля — группы практически здоровых для установления нормальных, физиологических колебаний. Понимая относительность понятия «нормальная величина», следует принять, что для выявления различий в патологии и оценки патологического признака, за «норму», как правило, принимается средняя арифметическая М±1σ или 2σ (при нормальном Гауссовом распределении) в зависимости от степени колебания показателя.

Раздел 7.7.2

Принципы определения активности ферментов в биологическом материале.

5.6.2. Уникальное свойство ферментов ускорять химические реакции может быть использовано для количественного определения содержания этих биокатализаторов в биологическом материале (тканевом экстракте, сыворотке крови и т.д.). При правильно подобранных экспериментальных условиях почти всегда существует пропорциональность между количеством фермента и скоростью катализируемой реакции, поэтому по активности фермента можно судить о количественном содержании его в исследуемой пробе.

Измерение ферментативной активности основывается на сравнении скорости химической реакции в присутствии активного биокатализатора со скоростью реакции в контрольном растворе, в котором фермент отсутствует или инактивирован.

Исследуемый материал помещают в инкубационную среду, где созданы оптимальные температура, рН среды, концентрации активаторов и субстратов. Одновременно осуществляют постановку контрольной пробы, в которую фермент не добавляют. Спустя некоторое время реакцию останавливают путём добавления различных реагентов (изменяющих рН среды, вызывающих денатурацию белков и т.д.) и проводят анализ проб.

Для того чтобы определить скорость ферментативной реакции, необходимо знать:

  • разность концентраций субстрата или продукта реакции до и после инкубации;
  • время инкубации;
  • количество материала, взятое для анализа.

Наиболее часто активность фермента оценивают по количеству образовавшегося продукта реакции. Так поступают, например, при определении активности аланинаминотрансферазы, катализирующей следующую реакцию:

Активность фермента можно рассчитывать также исходя из количества израсходованного субстрата. В качестве примера можно привести способ определения активности α-амилазы - фермента, расщепляющего крахмал. Измерив содержание крахмала в пробе до и после инкубации и вычислив разность, находят количество субстрата, расщеплённого за время инкубации.

Раздел 7.7.3

Методы измерения активности ферментов

Существует большое количество методов измерения активности ферментов, различающихся по технике исполнения, специфичности, чувствительности.

Чаще всего для определения применяются фотоэлектроколориметрические методы . В основе этих методов лежат цветные реакции с одним из продуктов действия ферментов. При этом интенсивность окраски получаемых растворов (измеренная на фотоэлектроколориметре) пропорциональна количеству образовавшегося продукта. Например, в процессе реакций, катализируемых аминотрансферазами, накапливаются α-кетокислоты, которые дают с 2,4-динитрофенилгидразином соединения красно-бурого цвета:

Если исследуемый биокатализатор обладает низкой специфичностью действия, то можно подобрать такой субстрат, в результате реакции с которым образуется окрашенный продукт. Примером может служить определение щелочной фосфатазы - фермента, широко распространённого в тканях человека, его активность в плазме крови существенно меняется при заболеваниях печени и костной системы. Этот фермент в щелочной среде гидролизует большую группу фосфорнокислых эфиров, как природных, так и синтетических. Одним из синтетических субстратов является паранитрофенилфосфат (бесцветный), который в щелочной среде расщепляется на ортофосфат и паранитрофенол (жёлтого цвета).

За ходом реакции можно наблюдать, измеряя постепенно нарастающую интенсивность окраски раствора:

Для ферментов, обладающих высокой специфичностью действия, такой подбор субстратов, как правило, невозможен.

Спектрофотометрические методы основаны на изменении ультрафиолетового спектра химических веществ, принимающих участие в реакции. Большинство соединений поглощает ультрафиолетовые лучи, причём поглощаемые длины волн характерны для присутствующих в молекулах этих веществ определённых групп атомов. Ферментативные реакции вызывают внутримолекулярные перегруппировки, в результате которых меняется ультрафиолетовый спектр. Эти изменения можно зарегистрировать на спектрофотометре.

Спектрофотометрическими методами, например, определяют активность окислительно-восстановительных ферментов, содержащих в качестве коферментов НАД или НАДФ. Эти коферменты действуют как акцепторы или доноры атомов водорода и, таким образом, либо восстанавливаются, либо окисляются в процессах метаболизма. Восстановленные формы этих коферментов имеют ультрафиолетовый спектр с максимумом поглощения при 340 нм, окисленные формы этого максимума не имеют. Так, при действии лактатдегидрогеназы на молочную кислоту происходит перенос водорода на НАД, что приводит к увеличению поглощения НАДН при 340 нм. Величина этого поглощения в оптических единицах пропорциональна количеству образовавшейся восстановленной формы кофермента.

По изменению содержания восстановленной формы кофермента можно определить активность фермента.

Флюориметрические методы. В основе этих методов лежит явление флюоресценции, которое заключается в том, что исследуемый объект под влиянием облучения излучает свет с более короткой длиной волны. Флюориметрические методы определения активности ферментов более чувствительны, чем спектрофотометрические. Сравнительно новыми и ещё более чувствительными являются хемилюминесцентные методы с применением люциферин-люциферазной системы. Такие методы позволяют определять скорость реакций, протекающих с образованием АТФ. При взаимодействии люциферина (карбоновой кислоты сложного строения) с АТФ образуется люцифериладенилат. Это соединение окисляется при участии фермента люциферазы, что сопровождается световой вспышкой. Измеряя интенсивность световых вспышек, удаётся определять количества АТФ порядка нескольких пикомолей (10-12 моль).

Титрометрические методы . Ряд ферментативных реакций сопровождается изменением рН инкубационной смеси. Примером такого фермента является липаза поджелудочной железы. Липаза катализирует реакцию:

Образующиеся жирные кислоты могут быть оттитрованы, причём количество щёлочи, израсходованное на титрование, будет пропорционально количеству выделившихся жирных кислот и, следовательно, активности липазы. Определение активности этого фермента имеет клиническое значение.

Манометрические методы основаны на измерении в закрытом реакционном сосуде объёма газа, выделившегося (или поглощённого) в ходе энзиматической реакции. С помощью таких методов были открыты и изучены реакции окислительного декарбоксилирования пировиноградной и α-кетоглутаровой кислот, протекающие с выделением СО2 . В настоящее время эти методы используются редко.

Раздел 7.7.4

Единицы активности ферментов и их применение.

Международная комиссия по ферментам предложила за единицу активности любого фермента принимать такое количество фермента, которое при заданных условиях катализирует превращение одного микромоля (10-6 моль) субстрата в единицу времени (1 мин, 1 час) или одного микроэквивалента затронутой группы в тех случаях, когда атакуется более одной группы в каждой молекуле субстрата (белки, полисахариды и другие). Должна быть указана температура, при которой проводится реакция. Результаты измерений активности ферментов могут быть выражены в единицах общей, удельной и молекулярной активности.

За единицу общей активности фермента в расчёте на количество материала, взятого для исследования . Так, активность аланинаминотрансферазы в печени крыс равна 1670 мкмоль пирувата в час на 1 г ткани; активность холинэстеразы в сыворотке крови человека составляет 250 мкмоль уксусной кислоты в час на 1 мл сыворотки при 37°C.

Особого внимания исследователя требуют высокие значения активности фермента как в норме, так и в патологии. Рекомендуется работать с небольшими показателями активности фермента. Для этого источник фермента берут в меньшем количестве (сыворотку разводят в несколько раз физиологическим раствором, а для ткани готовят меньший процентный гомогенат). По отношению к ферменту в таком случае создаются условия насыщения субстратом, что способствует проявлению его истинной активности.

Общая активность фермента рассчитывается с помощью формулы:

где а - активность фермента (общая), ΔС - разность концентраций субстрата до и после инкубации; В - количество материала, взятого на анализ, t - время инкубации; n - разведение.

Следует иметь в виду, что показатели активности ферментов сыворотки крови и мочи, исследуемых в диагностических целях, выражают в единицах общей активности.

Поскольку ферменты являются белками, важно знать не только общую активность фермента в исследуемом материале, но и ферментативную активность белка, находящегося в данной пробе. За единицу удельной активности принимают такое количество фермента, которое катализирует превращение 1 мкмоль субстрата в единицу времени в расчёте на 1 мг белка пробы . Для вычисления удельной активности фермента необходимо общую активность разделить на содержание белка в пробе:

Чем хуже очищен фермент, тем больше в пробе находится посторонних балластных белков, тем ниже удельная активность. В ходе очистки количество таких белков уменьшается, и соответственно удельная активность фермента повышается. Предположим, в исходном биологическом материале, являющемся источником фермента (измельчённая печень, кашица из растительной ткани), удельная активность была равна 0,5 мкмоль/ (мг белка× мин). После дробного осаждения сульфатом аммония и гель-фильтрации через сефадекс она повысилась до 25 мкмоль/ (мг белка× мин), т.е. увеличилась в 50 раз. К оценке эффективности очистки ферментных препаратов прибегают при производстве лекарственных средств энзиматической природы.

Удельную активность определяют в том случае, когда нужно сопоставить активность разных препаратов одного и того же фермента. Если требуется сравнить активность разных ферментов, рассчитывают молекулярную активность.

Молекулярная активность (или число оборотов фермента) - это количество моль субстрата, подвергающееся превращению под действием 1 моль фермента в единицу времени (обычно в 1 минуту). Разным ферментам присуща неодинаковая молекулярная активность. Уменьшение числа оборотов ферментов происходит под действием неконкурентных ингибиторов. Изменяя конформацию каталитического центра фермента, эти вещества понижают сродство фермента к субстрату, что приводит к уменьшению числа молекул субстрата, реагирующих с одной молекулой фермента в единицу времени.

Примеры

Обучающие задачи и эталоны их решения.

1. Задачи

1. Какие ферменты называют рацемазами?

2. Расшифруйте систематическое название фермента (отдельно для каждого из элементов, выделенных разными цветами):
S-аденозилметионин: гуанидинацетат- метил трансфераза ?

Определите:
а) тип реакции;
б) класс фермента;
в) подкласс.

2. Эталоны решения

1. Рацемазы - ферменты, катализирующие взаимопревращение оптических изомеров, содержащих единственный асимметрический атом углерода (см. раздел 2.3).

2. Систематическое название фермента читается с конца. Фермент относится к классу трансфераз , катализирует реакцию переноса метильной группы на гуанидинацетат (акцептор метильной группы) с S-аденозилметионина (донор метильной группы) (см. разделы 2.2 - 2.3).

3. а) В данной реакции происходит расщепление вещества без участия молекул воды

б) Негидролитическое расщепление субстрата с образованием двух продуктов катализируют ферменты, относящиеся к четвёртому классу (лиазы)

в) Разрывается связь между первым и вторым углеродными атомами, что приводит к отщеплению карбоксильной группы в виде СО2 . Следовательно, подкласс фермента - углерод-углерод-лиазы (см. раздел 2.3).

Ферменты (энзимы) - это специфические белки, играющие роль биологических катализаторов; вырабатываются клетками живых организмов.

Ферменты отличаются от обычных катализаторов своей большей специфичностью (см. ниже), а также способностью ускорять течение химических реакций в условиях нормальной жизнедеятельности организма.

Ферменты присутствуют во всех живых клетках - животных, растительных, бактериальных. Большинство ферментов находится в тканях в ничтожных концентрациях, однако известны случаи, когда ферментативной активностью обладает белок, составляющий значительную часть клеточной плазмы, например миозин в мышечной ткани. Молекулярный вес ферментов колеблется в широких пределах: от нескольких тысяч до нескольких миллионов, причем однотипные ферменты, но выделяемые из разных источников, могут иметь различный молекулярный вес, отличаться последовательностью аминокислотного состава.

Ферменты, обладающие одинаковым каталитическим действием, но отличающиеся по своим физико-химическим свойствам, называются изоферментами (изоэнзимами). Ферменты могут быть простыми или сложными белками. Последние, кроме белка (апофермента), имеют в своем составе и небелковый компонент - остаток органической молекулы или неорганический ион. Легко отделяемый от апофермента небелковый компонент называют коферментом. Прочно связанная с ферментом небелковая часть называется простетической группой. Многие простетические группы и коферменты являются производными витаминов, пигментов и др. Ферменты обладают строгой специфичностью по отношению к субстрату (т. е. избирательно взаимодействует с теми или иными химическими веществами и соединениями). Например, лактаза (находится в кишечном соке) расщепляет только дисахарид-лактозу и производные лактозы (лактобионовую кислоту, лактоуреиды и др.) с образованием смеси глюкозы и галактазы; мальтаза расщепляет мальтозу на две молекулы глюкозы, а амилаза действует только на крахмал, гликоген и другие .

В результате последовательного действия перечисленных, а также других ферментов превращаются в моносахариды и всасываются кишечной стенкой. Специфичность ферментов определяется тем, что они вступают во взаимодействие с определенной химической группировкой субстрата. Например, (см.) действует на белки, расщепляет связи, находящиеся внутри полипептидной цепи молекулы белка, при этом молекула белка расщепляется на полипептиды, которые затем под действием других ферментов - (см.), (см.) и пептидаз могут расщепляться до аминокислот. Специфичность ферментов играет, таким образом, важную биологическую роль; благодаря ей в организме достигается последовательность течения химических реакций. Неорганические ионы активируют ряд ферментов; некоторые ферменты (металлоферменты) вообще неактивны, если отсутствует тот или иной, специфичный для данного фермента ион. Участки ферментов, ответственные за локализацию и активацию субстрата в ферментативном процессе, называют активными центрами ферментов. В образовании активного центра участвуют специфические аминокислотные остатки белковой молекулы, сульфгидрильные группы и простетические группы, если они имеются. Так, в состав ферментов, носящих групповое название флавопротеидов, в качестве простетической группы входит флавиновое производное (обычно это флавинадениндинуклеотид - ФАД). Легко окисляясь и восстанавливаясь, флавиновые простетические группы выполняют функцию биологических переносчиков водорода, например при дегидрировании аминокислот с участием кислорода или при дегидрировании с участием цитохромов в митохондриях начальных компонентов дыхательной цепи (таких, как сукцинат,

Ферменты – это особый вид протеинов, которым природой отведена роль катализаторов разных химических процессов.

Этот термин постоянно на слуху, правда, далеко не все понимают, что такое фермент или энзим, какие функции выполняет это вещество, а также чем отличаются ферменты от энзимов и отличаются ли вообще. Все это сейчас и узнаем.

Без этих веществ ни люди, ни животные не смогли бы переваривать пищу. А впервые к применению ферментов в быту человечество прибегло более 5 тысяч лет тому назад, когда наши предки научились хранить молоко в «посуде» из желудков животных. В таких условиях под воздействием сычужного фермента молоко превращалось в сыр. И это только один из примеров работы энзима в качестве катализатора, ускоряющего биологические процессы. Сегодня ферменты незаменимы в промышленности, они важны для производства сахара, маргаринов, йогуртов, пива, кожи, текстиля, спирта и даже бетона. В моющих средствах и стиральных порошках также присутствуют эти полезные вещества – помогают выводить пятна при низких температурах.

История открытия

Энзим в переводе из греческого означает «закваска». А открытию этого вещества человечество обязано голландцу Яну Баптисту Ван-Гельмонту, жившему в XVI веке. В свое время он весьма заинтересовался спиртовым брожением и в ходе исследования нашел неизвестное вещество, ускоряющее этот процесс. Голландец назвал его fermentum, что в переводе означает «брожение». Затем, почти тремя веками позже, француз Луи Пастер, также наблюдая за процессами брожения, пришел к выводу, что ферменты – не что иное, как вещества живой клетки. А через некоторое время немец Эдуард Бухнер добыл фермент из дрожжей и определил, что это вещество не является живим организмом. Он также дал ему свое название – «зимаза». Еще несколькими годами позже другой немец Вилли Кюне предложил все белковые катализаторы разделить на две группы: ферменты и энзимы. Причем вторым термином он предложил называть «закваску», действия которой распространяются вне живых организмов. И лишь 1897 год положил конец всем научным спорам: оба термины (энзим и фермент) решено использовать как абсолютные синонимы.

Структура: цепь из тысяч аминокислот

Все ферменты являются белками, но не все белки – ферменты. Как и другие протеины, энзимы состоят из . И что интересно, на создание каждого фермента уходит от ста до миллиона аминокислот, нанизанных, словно жемчуг на нить. Но эта нить не бывает ровной – обычно изогнута в сотни раз. Таким образом, создается трехмерная уникальная для каждого фермента структура. Меж тем, молекула энзима – сравнительно крупное образование, и лишь небольшая часть его структуры, так называемый активный центр, участвует в биохимических реакциях.

Каждая аминокислота соединена с другой определенным типом химической связи, а каждый фермент имеет свою уникальную последовательность аминокислот. Для создания большинства из них используются примерно 20 видов аминовеществ. Даже незначительные изменения последовательности аминокислот могут кардинально менять внешний вид и «таланты» фермента.

Биохимические свойства

Хотя при участии ферментов в природе происходит огромное количество реакций, но все они могут быть разгруппированы на 6 категорий. Соответственно, каждая из этих шести реакций протекает под влиянием определенного типа ферментов.

Реакции при участии энзимов:

  1. Окисление и восстановление.

Ферменты, участвующие в этих реакциях, называются оксидоредуктазами. В качестве примера можно вспомнить как, алкогольдегидрогеназы преобразуют первичные спирты в альдегид.

  1. Реакция переноса группы.

Ферменты, благодаря которым происходят эти реакции, называются трансферазами. Они обладают умением перемещать функциональные группы от одной молекулы к другой. Так происходит, например, когда аланинаминотрансферазы перемещают альфа-аминогруппы между аланином и аспартатом. Также трансферазы перемещают фосфатные группы между АТФ и другими соединениями, а с остатков глюкозы создают дисахариды.

  1. Гидролиз.

Гидролазы, участвующие в реакции, умеют разрывать одинарные связи, добавляя элементы воды.

  1. Создание или удаление двойной связи.

Этот вид реакций негидролитическим путем происходит при участии лиазы.

  1. Изомеризация функциональных групп.

Во многих химических реакциях положение функциональной группы изменяется в пределах молекулы, но сама молекула состоит из того же количества и типов атомов, что были до начала реакции. Иными словами, субстрат и продукт реакции являются изомерами. Такого типа трансформации возможны под влиянием ферментов изомеразы.

  1. Образование одинарной связи с устранением элемента воды.

Гидролазы разрушают связь, добавляя в молекулу элементы воды. Лиазы осуществляют обратную реакцию, удаляя водную часть из функциональных групп. Таким образом, создают простую связь.

Как работают в организме

Ферменты ускоряют практически все химические реакции, происходящие в клетках. Они имеют жизненноважное значение для человека, облегчают пищеварение и ускоряют метаболизм.

Некоторые из этих веществ помогают разрушать слишком большие молекулы на более мелкие «куски», которые организм сможет переварить. Другие наоборот связывают мелкие молекулы. Но ферменты, говоря научным языком, обладают высокой селективностью. Это значит, что каждое из этих веществ способно ускорять только определенную реакцию. Молекулы, с которыми «работают» ферменты, называются субстратами. Субстраты в свою очередь создают связь с частью фермента, именуемой активным центром.

Существуют два принципа, объясняющие специфику взаимодействия ферментов и субстратов. В так называемой модели «ключ-замок» активный центр фермента занимает в субстрате место строго определенной конфигурации. Согласно другой модели, оба участника реакции, активный центр и субстрат, меняют свои формы, чтобы соединиться.

По какому бы принципу ни происходило взаимодействие результат всегда одинаковый – реакция под воздействием энзима протекает во много раз быстрее. Вследствие такого взаимодействия «рождаются» новые молекулы, которые потом отделяются от фермента. А вещество-катализатор продолжает выполнять свою работу, но уже при участии других частиц.

Гипер- и гипоактивность

Бывают случаи, когда энзимы выполняют свои функции с неправильной интенсивностью. Чрезмерная активность вызывает чрезмерное формирование продукта реакции и дефицит субстрата. В результате – ухудшение самочувствия и серьезные болезни. Причиной гиперактивности энзима может быть как генетическое нарушение, так и избыток витаминов или , используемых в реакции.

Гипоактивность ферментов может даже стать причиной смерти, когда, например, энзимы не выводят из организма токсины либо возникает дефицит АТФ. Причиной такого состояния также могут быть мутированные гены или, наоборот, гиповитаминоз и дефицит других питательных веществ. Кроме того, пониженная температура тела аналогично замедляет функционирование энзимов.

Катализатор и не только

Сегодня можно часто услышать о пользе ферментов. Но что такое эти вещества, от которых зависит работоспособность нашего организма?

Энзимы – это биологические молекулы, жизненный цикл которых не определяется рамками от рождения и смерти. Они просто работают в организме до тех пор, пока не растворятся. Как правило, это происходит под воздействием других ферментов.

В процессе биохимической реакции они не становятся частью конечного продукта. Когда реакция завершена, фермент покидает субстрат. После этого вещество готово снова приступить к работе, но уже на другой молекуле. И так продолжается столько, сколько необходимо организму.

Уникальность ферментов в том, что каждый из них выполняет только одну, ему отведенную функцию. Биологическая реакция происходит только тогда, когда фермент находит правильный для него субстрат. Это взаимодействие можно сравнить с принципом работы ключа и замка – только правильно подобранные элементы смогут «сработаться». Еще одна особенность: они могут работать при низких температурах и умеренном рН, а в роли катализаторов являются более стабильными, чем любые другие химические вещества.

Ферменты в качестве катализаторов ускоряют процессы метаболизма и другие реакции.

Как правило, эти процессы состоят из определенных этапов, каждый из которых требует работы определенного энзима. Без этого цикл преобразования или ускорения не сможет завершиться.

Пожалуй, из всех функций ферментов наиболее известна – роль катализатора. Это значит, что энзимы комбинируют химические реагенты таким образом, чтоб снизить энергетические затраты, необходимые для более быстрого формирования продукта. Без этих веществ химические реакции протекали бы в сотни раз медленнее. Но на этом способности энзимов не исчерпываются. Все живые организмы содержат энергию, необходимую им для продолжения жизни. Аденозинтрифосфат, или АТФ, это своего рода заряженная батарейка, которая снабжает клетки энергией. Но функционирование АТФ невозможно без ферментов. И главный энзим, производящий АТФ, – синтаза. Для каждой молекулы глюкозы, которая трансформируется в энергию, синтаза производит около 32-34 молекул АТФ.

Помимо этого, энзимы (липаза, амилаза, протеаза) активно применяются в медицине. В частности, служат компонентом ферментативных препаратов, таких как «Фестал», «Мезим», «Панзинорм», «Панкреатин», применяемых для лечения несварения желудка. Но некоторые энзимы способны также влиять на кровеносную систему (растворяют тромбы), ускорять заживление гнойных ран. И даже в противораковой терапии также прибегают к помощи ферментов.

Факторы, определяющие активность энзимов

Поскольку энзим способен ускорять реакции во много раз, его активность определяется так называемым числом оборотов. Этот термин обозначает количество молекул субстрата (реагирующего вещества), которую способна трансформировать 1 молекула фермента за 1 минуту. Однако существует ряд факторов, определяющих скорость реакции:

  1. Концентрация субстрата.

Увеличение концентрации субстрата ведет к ускорению реакции. Чем больше молекул действующего вещества, тем быстрее протекает реакция, поскольку задействовано больше активных центров. Однако ускорения возможно только до тех пор, пока не задействуются все молекулы фермента. После этого, даже повышение концентрации субстрата не приведет к ускорению реакции.

  1. Температура.

Обычно повышение температуры ведет к ускорению реакций. Это правило работает для большинства ферментативных реакций, но только до тех пор, пока температура не поднимется выше 40 градусов по Цельсию. После этой отметки скорость реакции, наоборот, начинает резко снижаться. Если температура опустится ниже критической отметки, скорость ферментативных реакций повысится снова. Если температура продолжает расти, ковалентные связи рушатся, а каталическая активность фермента теряется навсегда.

  1. Кислотность.

На скорость ферментативных реакций также влияет показатель рН. Для каждого фермента существует свой оптимальный уровень кислотности, при котором реакция проходит наиболее адекватно. Изменение уровня рН сказывается на активности фермента, а значит, и скорости реакции. Если изменения слишком велики, субстрат теряет способность связываться с активным ядром, а энзим больше не может катализировать реакцию. С восстановлением необходимого уровня рН, активность фермента также восстанавливается.

Ферменты, присутствующие в человеческом организме, можно разделить на 2 группы:

  • метаболические;
  • пищеварительные.

Метаболические «работают» над нейтрализацией токсических веществ, а также способствуют выработке энергии и белков. Ну и, конечно, ускоряют биохимические процессы в организме.

За что отвечают пищеварительные – понятно с названия. Но и здесь срабатывает принцип селективности: определенный тип ферментов влияет только на один вид пищи. Поэтому для улучшения пищеварения можно прибегнуть к маленькой хитрости. Если организм плохо переваривает что-то из еды, значит надо дополнить рацион продуктом, содержащим фермент, который способен расщепить трудно перевариваемую пищу.

Пищевые ферменты – катализаторы, которые расщепляют продукты питания до состояния, в котором организм способен поглощать из них полезные вещества. Пищеварительные энзимы бывают нескольких типов. В человеческом организме разные виды ферментов содержатся на разных участках пищеварительного тракта.

Ротовая полость

На этом этапе на пищу воздействует альфа-амилаза. Она расщепляет углеводы, крахмалы и глюкозу, которые содержатся в картофеле, фруктах, овощах и других продуктах питания.

Желудок

Здесь пепсин расщепляет белки до состояния пептидов, а желатиназа – желатин и коллаген, содержащиеся в мясе.

Поджелудочная железа

На этом этапе «работают»:

  • трипсин – отвечает за расщепление белков;
  • альфа-химотрипсин – помогает усвоению протеинов;
  • эластазы – расщепляют некоторые виды белков;
  • нуклеазы – помогают расщеплять нуклеиновые кислоты;
  • стеапсин – способствует усвоению жирной пищи;
  • амилаза – отвечает за усвоение крахмалов;
  • липаза – расщепляет жиры (липиды), содержащиеся в молочных продуктах, орехах, маслах и мясе.

Тонкая кишка

Над пищевыми частицами «колдуют»:

  • пептидазы – расщепляют пептидные соединения к уровню аминокислот;
  • сахараза – помогает усваивать сложные сахара и крахмалы;
  • мальтаза – расщепляет дисахариды к состоянию моносахаридов (солодовый сахар);
  • лактаза – расщепляет лактозу (глюкозу, содержащуюся в молочных продуктах);
  • липаза – способствует усвоению триглицеридов, жирных кислот;
  • эрепсин – воздействует на протеины;
  • изомальтаза – «работает» с мальтозой и изомальтозой.

Толстый кишечник

Здесь функции ферментов выполняют:

  • кишечная палочка – отвечает за переваривание лактозы;
  • лактобактерии – влияют на лактозу и некоторые другие углеводы.

Кроме названных энзимов, существуют еще:

  • диастаза – переваривает растительный крахмал;
  • инвертаза – расщепляет сахарозу (столовый сахар);
  • глюкоамилаза – превращает крахмал в глюкозу;
  • альфа-галактозидаза – способствует перевариванию бобов, семян, соевых продуктов, корневых овощей и листовых;
  • бромелайн – фермент, полученный из , способствует расщеплению разных видов белков, эффективен при разных уровнях кислотности среды, обладает противовоспалительными свойствами;
  • папаин – фермент, выделенный из сырой папайи, способствует расщеплению мелких и крупных протеинов, эффективен в широком диапазоне субстратов и кислотности.
  • целлюлаза – расщепляет целлюлозу, растительные волокна (в человеческом организме не обнаружена);
  • эндопротеаза – расщепляет пептидные связи;
  • экстракт бычьей желчи – энзим животного происхождения, стимулирует моторику кишечника;
  • и других минералов;
  • ксиланаза – расщепляет глюкозу из зерновых.

Катализаторы в продуктах

Ферменты имеют решающее значение для здоровья, поскольку помогают организму расщеплять пищевые компоненты до состояния, пригодного для использования питательных веществ. Кишечник и поджелудочная железа производят широкий спектр ферментов. Но кроме этого, многие их полезных веществ, способствующих пищеварению, содержатся также и в некоторых продуктах.

Ферментированные продукты являются практически идеальным источником полезных бактерий, необходимых для правильного пищеварения. И в то время, когда аптечные пробиотики «работают» только в верхнем отделе пищеварительной системы и часто не добираются до кишечника, эффект от ферментативных продуктов ощущается во всем желудочно-кишечном тракте.

Например, абрикосы содержат в себе смесь полезных энзимов, в том числе инвертазу, которая отвечает за расщепление глюкозы и способствует быстрому высвобождению энергии.

Натуральным источником липазы (способствует более быстрому перевариванию липидов) может послужить авокадо. В организме это вещество производит поджелудочная железа. Но дабы облегчить жизнь этому органу, можно побаловать себя, например, салатом с авокадо – вкусно и полезно.

Кроме того, что банан, пожалуй, самый известный источник калия, он также поставляет в организм амилазу и мальтазу. Амилаза содержится также в хлебе, картофеле, крупах. Мальтаза способствует расщеплению мальтозы, так называемого солодового сахара, который в обилии представлен в пиве и кукурузном сиропе.

Другой экзотический фрукт – ананас содержит в себе целый набор энзимов, в том числе и бромелайн. А он, согласно некоторым исследованиям, еще и обладает противораковыми и противовоспалительными свойствами.

Экстремофилы и промышленность

Экстремофилы – это вещества, способны сохранять жизнедеятельность в экстремальных условиях.

Живые организмы, а также ферменты, позволяющие им функционировать, были найдены в гейзерах, где температура близка к точке кипения, и глубоко во льдах, а также в условиях крайней солености (Долина Смерти в США). Кроме того, ученые находили энзимы, для которых уровень рН, как оказалось, также не принципиальное требование для эффективной работы. Исследователи с особым интересом изучают ферменты-экстремофилы, как вещества, которые могут быть широко использованы в промышленности. Хотя и сегодня энзимы уже нашли свое применение в индустрии как биологически и экологически чистые вещества. К применению энзимов прибегают в пищевой промышленности, косметологии, производстве бытовой химии.

Более того, «услуги» ферментов в таких случаях обходятся дешевле, чем синтетических аналогов. Кроме того, натуральные вещества являются биоразлагаемыми, что делает их использование безопасным для экологии. В природе существуют микроорганизмы, способные расщепить ферменты на отдельные аминокислоты, которые затем становятся компонентами новой биологической цепочки. Но это, как говорится, уже совсем другая история.