Будущее альтернативной энергетики. Эссе: «энергетика будущего. реальность и фантазии. Водородные топливные элементы

В канун нового года, каждый из нас, с большой вероятностью задает себе один и тот же вопрос. Что год грядущий нам готовит? И чтобы заглянуть в недалекое будущее, хочу вас познакомить с десяткой источников энергии будущего .

Сейчас в качестве основных источников энергии, используются нефть, газ и уголь. Но по многочисленным заключениям ученых в области геологии, запасы углеводородов в природе ограничены. Научная мысль и прогресс не стоит на месте и уже сегодня видны явные перспективы повсеместного использования человеком альтернативных источников энергии.

А как насчет космических солнечных станций, приливной энергетики, водорода, энергии тепла подземных лавовых потоков, летающих ветряков и, конечно же, термоядерного синтеза?

В десятку потенциальных источников будущего входят:

10. Космические солнечные станции.

Каждый час земля получает столько солнечной энергии, больше, чем земляне ее используют за целый год. Один из способов использование этой энергии, создание гигантских солнечных ферм, которые будут собирать часть высокоинтенсивного и бесперебойного солнечного излучения.

Огромные зеркала будут отражать солнечные лучи на коллектора меньшего размера. Затем эта энергия будет передаваться на землю с помощью микроволновых или лазерных пучков.

Одна из причин, почему этот проект находится на стадии идеи – это его огромная стоимость. Тем не менее, он может стать реальностью не в столь отдаленное время из-за развития гелеотехнологий и уменьшения стоимости вывоза грузов в космос.

9. Энергия человека.

У нас уже есть устройство заряжаемое человеком, но ученые работают над тем, как получить энергию от обычного движения. Речь идет о микроэлектронике, но потенциал велик, при целевой аудитории в миллиард людей. Сегодня разрабатывается электроника, потребляющая все меньше энергии и однажды возможно, ваш телефон будет заряжаться, болтаясь в сумке, в кармане или в ваших руках и при вождением пальцем по экрану.

В национальной лаборатории Лоуренса в Беркли ученые представили устройство, использующие вирусы для трансформации давления в электричество. Это звучит потрясающе, но пока объяснить, как это работает невозможно. Так же есть небольшие переносные системы пассивно производящие энергию во время вашего движения. Энергия человека не спасет от глобального потепления, но может спасти любая мелочь.

8. Приливная энергетика.

Обуздание всей энергии движения океана могло зарядить весь мир несколько раз, поэтому более 100 компаний работают над этим. Из-за упора на энергию солнца и ветра, приливную энергетику вытеснили из первых рядов, но она становится более эффективной.

Например, проект «Устрица» - это шарнирный клапан на дне океана, мощностью 2,4 МВт, которые открывая и закрывая, качают воду на берег, где она приводит в движение стандартную гидроэлектрическую турбину. Одна такая установка могла бы обеспечить энергией целый микрорайон или пару больших многоэтажек, то есть, около 2500 семей.

Еще один пример, крыловидная турбина «Терминатор», которую создал инженер из военно-воздушной академии США. Она использует принцип подъемной силы, а не винтовое вращение, что теоретически позволяет ей собирать 99% энергии волн, в отличии от 50%-й эффективности нынешних приливных станций.

В городе Перт в Австралии, впервые установили опреснительные установки, которые работают от энергии волн. Они обеспечивают пресной водой 500 тыс. жителей.

7. Водород.

Водород, самый распространенный элемент во вселенной, содержит в себе много энергии, притом, что двигатель, сжигающий чистый водород практически не производит выбросов. Вот почему долгие годы NASA заправляла им «Шаттлы» и некоторые модули «МКС».

Мы не заправляем им обычные двигатели лишь потому, что на нашей планете он существует только в связанной форме. Например, вода, которую мы пьем. Россия в 80-х переделала пассажирский самолет так, чтобы он работал на водороде, а «Боинг» протестировал свои самолеты на нем же.

После отделения водород можно закачать в мобильные топливные ячейки и поместить их на автомобили для прямой генерации электричества. Такие автомобили сейчас производятся довольно большими партиями.

«Хонда» планирует подчеркнуть универсальность своего нового авто на топливных ячейках подключив его к электросети дома в Японии, но не для высасывания электроэнергии из сети, как это делают электромобили соперники, а наоборот, для обеспечения энергией.

По заверению «Хонды» одна такая полностью заправленная машина способна питать энергией целый дом в течение недели или проехать 480 км без дозаправки. Главное препятствие – относительно высокая стоимость таких машин и недостаток таких заправок. Хотя в Калифорнии таких построить планируют 70, в Южной Корее их скоро будет 43 и Германия нацелена на сотню к 2017 году.

6. Энергия тепла подземных лавовых потоков.

Способ превращения в энергию тепла, которое поднимается из расплавленных глубин земли, другими словами геотермальная энергетика, используется для нужд миллионов домов по всему миру. Она составляет 27% произведенной энергии Филиппин и 30% Исландии.

В последней, в рамках проекта глубокого бурения нашли целый клад подземного хранилища магмы. Раскаленная магма мгновенно превратила закаченную воду в пар, который 450 град. С, что стало рекордом. Этот пар высокого давления увеличил выработку энергии в 10 раз. Поразительный результат, который должен привести к гигантскому скачку эффективности выработки геотермальной энергии по всему миру.

Нам поистине повезло с эпохой. Мы являемся единственного в своем роде перехода мира от грязного ископаемого топлива к энергии из чистых возобновляемых источников. Это

Как вы думаете, какой будет энергия будущего?

Окончание в следующем выпуске.

Ни для кого не секрет, что используемые сегодня человечеством ресурсы конечны, более того, их дальнейшая добыча и использование может привести не только к энергетической, но и к экологической катастрофе. Традиционно используемые человечеством ресурсы — уголь, газ и нефть — закончатся уже спустя несколько десятилетий, и меры нужно принимать уже сейчас, в наше время. Конечно, можно надеяться, что мы вновь найдем какое-либо богатое месторождение, так же как было в первой половине прошлого века, однако ученые уверены, что таких крупных залежей уже нет. Но в любом случае даже открытие новых месторождений только отсрочит неизбежное, необходимо найти способы производства альтернативной энергии, и переходить на возобновляемые ресурсы, такие как ветер, солнце, геотермальная энергия, энергия водных потоков и другие, а наряду с этим нужно продолжать разработки энергосберегающих технологий.

В этой статье мы рассмотрим несколько самых перспективных, на взгляд современных ученых, идей, на которых будет строиться энергетика будущего.

Солнечные станции

Люди издавна задумывались над тем, возможно ли Под солнечными лучами нагревали воду, сушили одежду и глиняную посуду перед ее отправкой в печь, однако эти способы нельзя назвать эффективными. Первые технические средства, преобразующие солнечную энергию, появились еще в 18 веке. Французский ученый Ж. Бюффон показал опыт, в котором ему удалось с помощью большого вогнутого зеркала в ясную погоду воспламенить сухое дерево с расстояния около 70 метров. Его соотечественник, известный ученый А. Лавуазье, применял линзы, чтобы концентрировать энергию солнца, а в Англии создали двояковыпуклое стекло, которое, фокусируя солнечные лучи, расплавляло чугун всего за несколько минут.

Естествоиспытатели проводили множество опытов, которые доказывали, что солнца на земле возможно. Однако солнечная батарея, которая превращала бы солнечную энергию в механическую, появилась сравнительно недавно, в 1953 году. Ее создали ученые из Национального аэрокосмического агентства США. Уже в 1959 году солнечную батарею впервые применили для оснащения космического спутника.

Возможно уже тогда, осознав, что в космосе такие батареи гораздо эффективнее, ученым пришла идея о создании космических солнечных станций, ведь за час солнце вырабатывать столько энергии, сколько все человечество не потребляет и за год, так почему же не использовать это? Какой будет солнечная энергетика будущего?

С одной стороны кажется, что использование солнечной энергии идеальный вариант. Однако себестоимость огромной космической солнечной станции очень высока, да и к тому же она будет дорога в эксплуатации. Со временем, когда будут введены новые технологии по доставке грузов в космос, а также новые материалы, реализация подобного проекта станет возможной, но пока мы можем пользоваться только относительно небольшими батареями на поверхности планеты. Многие скажут, что это тоже неплохо. Да, возможно в условиях частного дома, но для энергообеспечения больших городов, соответственно, необходимо либо множество солнечных батарей, либо технология, которая сделает их эффективнее.

Экономическая сторона вопроса здесь тоже присутствует: любой бюджет сильно пострадает, если на него будет возложена задача перевести целый город (или всю страну) на солнечные батареи. Казалось бы, можно обязать жителей городов выплачивать некоторые суммы на переоснащение, но в таком случае недовольны будут они, ведь если бы люди готовы были бы пойти на такие траты, они уже давно сделали бы это сами: возможность купить солнечную батарею есть у каждого.

Касательно солнечной энергии есть и еще один парадокс: затраты на производство. Перевод энергии солнца в электричество напрямую — не самая эффективная вещь. До сих пор еще не найдено способа лучше, чем использовать солнечные лучи для нагревания воды, которая, превращаясь в пар, в свою очередь вращает динамо-машину. В таком случае энергопотеря минимальна. Человечество хочет использовать "экологичные" солнечные панели и солнечные станции, чтобы сохранить ресурсы на земле, однако для подобного проекта потребуется огромное количество тех же ресурсов, и "неэкологичной" энергии. Например, во Франции недавно была построена солнечная электростанция, площадью около двух квадратных километров. Стоимость постройки составила около 110 миллионов евро, не считая затрат на эксплуатацию. При всем этом следует учитывать, что срок службы подобных механизмов составляет около 25 лет.

Ветер

Энергия ветра — также использовалась людьми еще с древности, самым простым примером можно назвать хождение под парусом и ветряные мельницы. Ветряки используются и сейчас, особенно они эффективны в областях с постоянными ветрами, например на побережье. Ученые постоянно выдвигают идеи, как модернизировать уже имеющиеся приспособления для преобразования ветряной энергии, одна из них - ветряки в виде парящих турбин. За счет постоянного вращения они могли бы "висеть" в воздухе на расстоянии нескольких сотен метров от земли, где ветер сильный и постоянный. Это помогло бы в электрификации сельской местности, где невозможно использование стандартных ветряков. К тому же такие парящие турбины могли бы быть оснащены интернет-модулями, с помощью которых осуществлялось бы обеспечение людей доступом в мировую паутину.

Приливы и волны

Бум на солнечную и ветряную энергетику постепенно проходит, и интерес исследователей привлекла другая природная энергия. Более перспективной считается использование приливов и отливов. Уже сейчас этим вопросом занимается около ста компаний по всему миру, существует и несколько проектов, доказавших эффективность данного способа добычи электричества. Преимущество перед солнечной энергетикой в том, что потери при переводе одной энергии в другую минимальны: приливная волна вращает огромную турбину, которая и вырабатывает электричество.

Проект "Устрица" — это идея установить на дне океана шарнирный клапан, который будет подавать воду на берег, тем самым вращая простую гидроэлектрическую турбину. Всего одна такая установка могла бы обеспечить электричеством небольшой микрорайон.

Уже сейчас в Австралии успешно применяют приливные волны: в городе Перте установлены опреснители, работающие на этом типе энергии. Их работа позволяет обеспечить пресной водой около полумиллиона человек. Природная энергетика и промышленность также могут сочетаться в этой отрасли производства энергии.

Использование несколько отличается от технологий, которые мы привыкли видеть в речных гидроэлектростанциях. Часто ГЭС наносят вред окружающей среде: затопляются прилегающие территории, разрушается экосистема, а вот станции, работающие на приливных волнах, в этом плане гораздо безопаснее.

Энергия человека

Одним из самых фантастических проектов в нашем списке можно назвать использование энергии живых людей. Звучит ошеломляюще и даже несколько ужасающе, но не все так страшно. Ученые лелеют мысль о том, как использовать механическую энергию движения. Речь в этих проектах идет о микроэлектронике и нанотехнологиях с низким энергопотреблением. Пока звучит как утопия, реальных разработок нет, но идея весьма интересная и не покидает умы ученых. Согласитесь, весьма удобны будут устройства, которые подобно часам с автоматической подзаводкой, будут заряжаться от того, что по сенсору проводят пальцем, или от того, что планшет или телефон просто болтается в сумке при ходьбе. Не говоря уж об одежде, которая, наполненная разными микроустройствами, могла бы преобразовывать в электричество энергию движения человека.

В Беркли, в лаборатории Лоуренса, например, ученые попытались воплотить в жизнь идею о том, чтобы использовать вирусы для давления в электричество. Небольшие механизмы, работающие от движения, так же имеются, однако пока что на поток подобная технология не поставлена. Да, с глобальным энергетическим кризисом подобным образом не справиться: скольким же людям придется "крутить педали", чтобы заставить работать целый завод? Но как одна из мер, применяемых в комплексе, теория вполне жизнеспособна.

Особенно подобные технологии будут эффективны в труднодоступных местах, на полярных станциях, в горах и тайге, среди путешественников и туристов, у которых не всегда есть возможность зарядить свой гаджет, а вот оставаться на связи важно, особенно если группа попала в критическую ситуацию. Как много всего можно было бы предотвратить, если бы у людей всегда было надежное устройство связи, не зависящее "от розетки".

Топливные ячейки водорода

Пожалуй, у каждого владельца авто, глядящего на индикатор количества бензина, приближающийся к нулю, возникала мысль о том, как отлично было бы, если бы машина работала на воде. Но сейчас ее атомы попали в поле зрения ученых как настоящие объекты энергетики. Дело в том, что в частицах водорода — самого распространенного газа во вселенной — содержится громадное количество энергии. Более того, двигатель сжигает этот газ практически без побочных продуктов, то есть, мы получаем очень экологичное топливо.

Водородом заправляют некоторые модули МКС и шатлы, но на Земле он существует в основном в виде соединений, таких как вода. В восьмидесятых годах в России были разработки самолетов, использующих в качестве топлива водород, эти технологии даже применяли на практике, и экспериментальные модели доказали свою эффективность. Когда водород отделяется, он перемещается в специальную топливную ячейку, после чего возможна генерация электричества напрямую. Это не энергетика будущего, это уже реальность. Подобные автомобили уже производятся и довольно большими партиями. Компания Honda, дабы подчеркнуть универсальность источника энергии и авто в целом, провела эксперимент в результате которого машина была подключена к электрической домашней сети, однако не для того, чтобы получить подзарядку. Автомобиль может обеспечивать энергией частный дом в течение нескольких дней, или проехать без дозаправки почти пятьсот километров.

Единственный недостаток подобного источника энергии на данный момент — это относительно высокая стоимость таких экологичных машин, и, конечно, достаточно небольшое количество водородных заправок, однако во многих странах уже планируется их постройка. Например, в Германии уже стоит план об установке ста заправочных станций к 2017 году.

Тепло земли

Превращение тепловой энергии в электричество — это и есть сущность геотермальной энергетики. В некоторых странах, где затруднено использование других отраслей, она используется довольно широко. Например, на Филлипинах 27 % всего электричества приходится именно на геотермальные станции, а в Исландии этот показатель составляет около 30 %. Сущность этого способа добычи энергии довольно проста, механизм схож с простой паровой машиной. До предполагаемого "озера" магмы необходимо пробурить скважину, через которую подается вода. При контакте с раскаленной магмой вода мгновенно превращается в пар. Он поднимается, где крутит механическую турбину, тем самым вырабатывая электричество.

Будущее геотермальной энергетики состоит в том, чтобы найти большие "хранилища" магмы. Например, в вышеупомянутой Исландии это удалось: раскаленная магма за долю секунды превратила всю закачанную воду в пар температурой около 450 градусов по Цельсию, что является абсолютным рекордом. Подобный пар высокого давления способен повысить эффективность геотермальной станции в несколько раз, это может стать толчком к развитию геотермальной энергетики во всем мире, особенно в областях, насыщенных вулканами и термальными источниками.

Использование ядерных отходов

Атомная энергетика, в свое время, произвела настоящий фурор. Так было до тех пор, пока люди не осознали всю опасность этой отрасли энергетики. Аварии возможны, от подобных случаев никто не застрахован, но они весьма редки, а вот радиоактивные отходы появляются стабильно и до недавнего времени ученые не могли решить эту проблему. Дело в том, что стержни урана — традиционное "топливо" АЭС, может быть использовано только на 5 %. После выработки этой небольшой части, весь стержень отправляется на "свалку".

Ранее применялась технология, при которой стержни погружались в воду, которая замедляет нейтроны, поддерживая устойчивую реакцию. Сейчас вместо воды стали использовать жидкий натрий. Эта замена позволяет не только использовать весь объем урана, но и переработать десятки тысяч тонн радиоактивных отходов.

Избавить планету от отходов атомной энергетики важно, но в самой технологии есть одно "но". Уран относится к ресурсам, и его запасы на Земле конечны. В случае если всю планету перевести исключительно на энергию, получаемую от АЭС (к примеру, в США АЭС производят лишь 20% всего потребляемого электричества), запасы урана будут истощены довольно быстро, и это снова приведет человечество на порог энергетического кризиса, так что атомная энергетика, пусть и модернизированная, только временная мера.

Растительное топливо

Еще Генри Форд, создав свою "Модель Т", рассчитывал, что она уже будет работать на биотопливе. Однако в то время были открыты новые нефтяные месторождения, и нужда в альтернативных источниках энергии отпала еще на несколько десятков лет, но теперь снова возвращается.

За последние пятнадцать лет использование растительных видов топлива, таких как этанол и биодизель, возросло в несколько раз. Их используют как самостоятельные источники энергии, так и в качестве добавок к бензину. Некоторое время назад надежды возлагались на особую просяную культуру, получившую название "канола". Она совершенно непригодна в пищу ни для людей, ни для скота, однако обладает высокими показателями масличности. Из этого масла и стали производить "биодизель". Но эта культура займет слишком много места, если попытаться вырастить ее столько, чтобы обеспечить топливом хотя бы часть планеты.

Теперь ученые заговорили об использовании водорослей. Их масличность около 50 %, что позволит так же легко извлекать масло, а отходы можно превращать в удобрения, на основе которых будут выращиваться новые водоросли. Идея считается интересной, но свою жизнеспособность пока что не доказала: публикация об успешных экспериментах в этой области пока не опубликовано.

Термоядерный синтез

Будущая энергетика мира, по мнению современных ученых, невозможна без технологий Это, на данный момент, самая перспективная разработка, в которую уже вкладывают миллиарды долларов.

В используется энергия деления. Она опасна тем, что есть угроза возникновения неуправляемой реакции, которая уничтожит реактор, и приведет к выбросу огромного количества радиоактивных веществ: пожалуй, все помнят аварию на Чернобыльской АЭС.

В реакциях термоядерного синтеза, что следует из названия, используется энергия, выделяемая при слиянии атомов. В результате, в отличие от атомного деления, не образуется никаких радиоактивных отходов.

Главной проблемой является то, что в результате термоядерного синтеза образуется вещество, имеющее настолько высокую температуру, что может уничтожить весь реактор.

Будущего — реальность. И фантазии здесь неуместны, на данный момент на территории Франции уже началась постройка реактора. Несколько миллиардов долларов вложено в экспериментальный проект, который профинансирован многими странами, в число которых, помимо ЕС, входят Китай и Япония, США, Россия и другие. Изначально первые эксперименты планировалось запустить уже в 2016 году, однако расчеты показали, что бюджет слишком мал (вместо 5 миллиардов потребовалось 19), и запуск перенесли еще на 9 лет. Возможно, через несколько лет мы увидим, на что способна термоядерная энергетика.

Проблемы настоящего и возможности будущего

Не только ученые, но и писатели-фантасты, дают множество идей для воплощения технологии будущего в энергетике, однако все сходятся на том, что пока что ни один из предложенных вариантов не может произвести полное обеспечение всех потребностей нашей цивилизации. К примеру, если все автомобили в США будут ездить на биотопливе, полями канолы придется засадить территорию, равную половине всей страны, без учета того, что земель, пригодных для земледелия в Штатах не так уж много. Более того, пока что все способы производства альтернативной энергии - дороги. Пожалуй, каждый из простых городских жителей, согласен, что важно использовать экологически чистые, возобновляемые ресурсы, однако не в случае, когда им озвучивают стоимость такого перехода на данный момент. Ученым предстоит еще много работать в этой сфере. Новые открытия, новые материалы, новые идеи - все это поможет человечеству успешно справиться с назревающим ресурсным кризисом. Решить планеты можно только комплексными мерами. В некоторых областях удобнее применять добычу энергии с помощью ветра, где-то - солнечные батареи, и так далее. Но, возможно, главным фактором станет снижение энергопотребления в целом и создание энергосберегающих технологий. Каждый человек должен понимать, что несет ответственность за планету, и каждый должен задать себе вопрос: "Какую энергетику я выбираю для будущего?" Прежде чем перейти на другие ресурсы, каждый должен осознать, что это действительно необходимо. Только при комплексном подходе удастся решить проблему энергопотребления.

Идея использовать волнение моря для получения энергии не то чтобы нова: заявка на патент волновой мельницы была подана аж в 1799 году. В конце XIX века кинетическую энергию волн научились преобразовывать в электричество - и только в 2008-м в Португалии была запущена первая волновая электростанция. Мощность ее была невелика - всего 2,25 МВт, - но зато потенциал волновой энергетики был оценен по достоинству, и теперь аналогичные проекты создаются в десятке стран, включая Россию.

По подсчетам ученых, в перспективе волновая энергетика окажется выгоднее, чем ветровая (удельная мощность волн на порядок превышает удельную мощность ветра), а прилегающие к морям страны смогут генерировать до 5% электроэнергии за счет волн.

Энергия вирусов

Представь себе, вирусы - микроскопические вредители, которые переносят болезни, - могут быть неплохим источником энергии. Приспособить их для такого использования удалось ученым Национальной лаборатории имени Лоуренса (США). Модифицированный ими вирус-бактериофаг под названием M13 создает электрический заряд при прикосновении к «инфицированной» им поверхности. Иными словами, чтобы получить от него электричество, достаточно провести пальцем, например, по экрану смартфона - делов-то! Правда, максимальный заряд, которого ученым удалось добиться от M13, составлял четверть батарейки AAA. Впрочем, это был лишь первый прорыв в микроэнергетике: ученые полагают, что ее потенциал значительно больше.

Биотопливо из водорослей

Другим не менее изобретательным решением стало использование водной растительности в качестве топлива. Получаемая таким образом энергия едва ли сравнится по объемам с энергией, получаемой от добычи нефти и газа, - зато сможет решить проблему загрязнения водоемов, с каждым годом встающую в ряде стран все острее. Скажем, в Японии. Правительство страны ежегодно выделяет немалые суммы на очистку берегов от водорослей - их переработка позволит хотя бы отбить затраченные средства.

Как водоросли превращаются в топливо? Первым делом собранную растительность помещают в резервуар. Потом при помощи специальных бактерий в нем запускается процесс брожения. При брожении выделяется метан, который в итоге и направляется в электрический генератор.

Как ты понимаешь, получаемой из водорослей энергии недостаточно, чтобы пытаться обеспечить ей жилые дома, - однако она в разы превосходит энергию всех прочих источников биологического топлива и сравнительно просто добывается. А значит, к ней будут обращаться все чаще.

Энергетический потенциал Мирового океана

Волновая энергетика и водоросли лишь часть источников энергии, доступных благодаря океану. Остальные менее популярны - но не менее перспективны:

Энергия приливов. Для ее получения используются приливные электростанции. Подобные установки существуют уже в десятке стран, включая Россию. По подсчетам ученых, данный источник немногим уступает волновой энергетике.

Энергия течений. Представляешь, сколько энергии мог бы вырабатывать, скажем, Гольфстрим? И не пытайся: много. Пока что разработкой этого направления занимаются Великобритания и США. В Штатах, кстати, уже разработана турбина мощностью 400 кВт.

Энергия температурного градиента морской воды. Или попросту энергия, полученная из разницы между температурой воды на поверхности и на глубине. Сравнительно новый источник, исследуемый главным образом США. Потенциал пока не вполне изучен.

Осмотическая энергия. Называемая также энергией диффузии жидкостей, она получается в местах смешивания соленой и пресной воды. Единственная на данный момент подобная электростанция построена в Норвегии.

Не стоит забывать и про так называемую энергию водного потока. Ничего нового: именно ее выработкой занимаются известные тебе гидроэлектростанции.

Энергия земных недр

Нефть и газ не единственное, зачем стоит бурить землю: геотермальная энергия, или энергия земных недр, однажды сможет составить им конкуренцию. Для ее получения используются геотермальные станции. Устанавливаемые вблизи вулканов, такие установки успешно снабжают энергией Исландию, Японию, Индонезию и ряд других стран. При этом сама магма ими не используется: энергию дает кипящая вода вроде той, что вырывается на поверхность в гейзерах.

Энергетический потенциал недр не так высок, как у вышеперечисленных источников. Зато этот вид энергии подходит странам, лишенным выхода к морю.

Термоядерная энергия

Сколько бы альтернативная энергетика ни использовала естественные процессы, происходящие на планете, самый мощный источник энергии будет полностью рукотворным. Им станет ITER - Международный экспериментальный термоядерный реактор, способный воссоздавать процессы, происходящие внутри звезд.

Первоначально запуск ITER планировался на 2016 год, однако теперь сроки сдвинулись к началу 30-х. Более того, подключить установку к энергетической сети удастся от силы к 2040-му. Впрочем, результат стоит ожиданий: выделяемой при термоядерном синтезе энергии должно хватить на несколько стран.

За последние годы альтернативная энергетика стала предметом пристального интереса и ожесточенных дискуссий. Под угрозой изменения климата и того факта, что средние мировые температуры продолжают расти с каждым годом, стремление найти формы энергии, которые позволят сократить зависимость от ископаемого топлива, угля и других загрязняющих окружающую среду процессов, естественным образом выросло.

В то время как большинство концепций не новы, только за последние несколько десятилетий этот вопрос стал, наконец, актуальным. Благодаря усовершенствованию технологий и производства, стоимость большинства форм альтернативной энергии понижалась, в то время как эффективность росла. Что же такое альтернативная энергетика, если говорить простыми и понятными словами, и какова вероятность того, что она станет основной?

Очевидно, остаются некоторые споры касательно того, что означает «альтернативная энергия» и к чему эту фразу можно применить. С одной стороны, этот термин можно отнести к формам энергии, которые не приводят к увеличению углеродного следа человечества. Поэтому он может включать ядерные объекты, гидроэлектростанции и даже природный газ и «чистый уголь».

С другой стороны, этот термин также используется для обозначения того, что в настоящее время считается нетрадиционными методами энергетики - энергии солнца, ветра, геотермальной энергии, биомассы и других недавних дополнений. Такого рода классификация исключает такие методы добычи энергии, как гидроэлектростанции, которые существуют больше сотни лет и представляют собой довольно распространенное явление в некоторых регионах мира.

Другой фактор в том, что альтернативные источники энергии должны быть «чистыми», не производить вредных загрязняющих веществ. Как уже отмечалось, это подразумевает чаще всего двуокись углерода, однако может относиться и к другим выбросам - моноксиду углерода, двуокиси серы, окиси азота и другим. По этим параметрам ядерная энергия не считается альтернативным источником энергии, поскольку производит радиоактивные отходы, которые высоко токсичны и должны храниться соответствующим образом.

Во всех случаях, однако, этот термин используется для обозначения видов энергии, которые придут на смену ископаемому топливу и углю в качестве преобладающей формы производства энергии в ближайшее десятилетие.

Виды альтернативных источников энергии
Строго говоря, существует много видов альтернативной энергии. Опять же, здесь определения заходят в тупик, потому что в прошлом «альтернативной энергетикой» называли методы, использование которых не считали основным или разумным. Но если взять определение в широком смысле, в него войдут некоторые или все эти пункты:

Гидроэлектроэнергия. Это энергия, вырабатываемая гидроэлектрическими плотинами, когда падающая и текущая вода (в реках, каналах, водопадах) проходит через устройство, вращающее турбины и вырабатывающее электричество.

Ядерная энергия. Энергия, которая производится в процессе реакций замедленного деления. Урановые стержни или другие радиоактивные элементы нагревают воду, превращая ее в пар, а пар крутит турбины, вырабатывая электричество.

Энергия, которая получается напрямую от Солнца; (обычно состоящие из кремниевой подложки, выстроенные в крупные массивы) преобразуют лучи солнца напрямую в электрическую энергию. В некоторых случаях и тепло, производимое солнечным светом, используется для производства электричества, это известно как солнечная тепловая энергия.

Энергия ветра. Энергия, вырабатываемая потоком воздуха; гигантские ветряные турбины вертятся под действием ветра и вырабатывают электричество.

Геотермальная энергия. Эту энергию вырабатывает тепло и пар, производимые геологической активностью в земной коре. В большинстве случаев в грунт над геологически активными зонами помещаются трубы, пропускающие пар через турбины, таким образом вырабатывая электричество.

Энергия приливов. Приливное течение у береговых линий тоже может использоваться для выработки электричества. Ежедневное изменение приливов и отливов заставляет воду протекать через турбины назад и вперед. Вырабатывается электроэнергия, которая передается на береговые электростанции.

Биомасса. Это относится к топливу, которое получают из растений и биологических источников - этанола, глюкозы, водорослей, грибов, бактерий. Они могли бы заменить бензин в качестве источника топлива.

Водород. Энергия, получаемая из процессов, включающих газообразный водород. Сюда входят каталитические преобразователи, при которых молекулы воды разбиваются на части и воссоединяются в процессе электролиза; водородные топливные элементы, в которых газ используется для питания двигателя внутреннего сгорания или для вращения турбины с подогревом; или ядерный синтез, при котором атомы водорода сливаются в контролируемых условиях, высвобождая невероятное количество энергии.

Альтернативные и возобновляемые источники энергии
Во многих случаях альтернативные источники энергии также являются возобновляемыми. Тем не менее эти термины не полностью взаимозаменяемы, поскольку многие формы альтернативных источников энергии полагаются на ограниченный ресурс. К примеру, ядерная энергетика опирается на уран или другие тяжелые элементы, которые необходимо сперва добыть.

В то же время ветер, солнечная, приливная, геотермальная и гидроэлектроэнергия полагаются на источники, которые полностью возобновляемые. Лучи солнца - самый изобильный источник энергии из всех и, хоть и ограниченный погодой и временем суток, является неисчерпаемым с промышленной точки зрения. Ветер тоже никуда не девается, благодаря изменениям давления в нашей атмосфере и вращению Земли.

Развитие
В настоящее время альтернативная энергетика все еще переживает свою юность. Но эта картина быстро меняется под влиянием процессов политического давления, всемирных экологических катастроф (засух, голода, наводнений) и улучшений в технологиях возобновляемых энергий.

Например, по состоянию на 2015 год, энергетические потребности мира по-прежнему преимущественно обеспечивались углем (41,3%) и природным газом (21,7%). Гидроэлектростанции и атомная энергетика составили 16,3% и 10,6% соответственно, в то время как «возобновляемые источники энергии» (энергии солнца, ветра, биомассы и пр.) - всего 5,7%.

Это сильно изменилось с 2013 года, когда мировое потребление нефти, угля и природного газа составило 31,1%, 28,9% и 21,4% соответственно. Ядерная и гидроэлектроэнергия составляли 4,8% и 2,45%, а возобновляемые источники - всего 1,2%.

Кроме того, наблюдалось увеличение числа международных соглашений относительно обуздания использования ископаемого топлива и развития альтернативных источников энергии. Например, Директиву о возобновляемой энергии, подписанную Евросоюзом в 2009 году, которая установила цели по использованию возобновляемой энергии для всех стран-участниц к 2020 году.

По своей сути, из этого соглашения следует, что ЕС будет удовлетворять не менее 20% общего объема своих потребностей в энергии возобновляемой энергией к 2020 году и по меньшей мере 10% транспортного топлива. В ноябре 2016 года Европейская комиссия пересмотрела эти цели и установила уже 27% минимального потребления возобновляемой энергии к 2030 году.

Некоторые страны стали лидерами в области развития альтернативной энергетики. Например, в Дании энергия ветра обеспечивает до 140% потребностей страны в электроэнергии; излишки поставляются в соседние страны, Германию и Швецию.

Исландия, благодаря своему расположению в Северной Атлантике и ее активным вулканам, достигла 100% зависимости от возобновляемых источников энергии уже в 2012 году за счет сочетания гидроэнергетики и геотермальной энергии. В 2016 году Германия приняла политику поэтапного отказа от зависимости от нефти и ядерной энергетики.

Долгосрочные перспективы альтернативной энергетики являются чрезвычайно позитивными. Согласно отчету 2014 году Международного энергетического агентства (МЭА), на фотовольтаическую солнечную энергию и солнечную тепловую энергию будет приходиться 27% мирового спроса к 2050 году, что сделает ее крупнейшим источником энергии. Возможно, благодаря достижениям в области синтеза, ископаемые источники топлива будут безнадежно устаревшими уже к 2050 году.

Несмотря на серьезные инвестиции в развитие альтернативных источников энергии, сейчас они удовлетворяют менее 1% глобальных нужд человечества в электричестве. Но этот показатель с каждым годом стабильно растет.

В 1872 году русский изобретатель Александр Лодыгин создал электрическую лампочку накаливания, но в те времена он не мог даже предположить, что со второй половины XX столетия электростанции привычных типов не смогут удовлетворять растущие потребности человечества без нанесения вреда окружающей среде. И дело даже не в освещении жилых помещений, ведь во многих странах галогеновые лампы уже стали стандартом, а на подходе еще более энергоэффективная технология - светодиоды. Главная причина быстро растущего уровня потребления электричества на планете заключается в возникновении абсолютно новых типов устройств, расходующих гигаватты электроэнергии. В первую очередь речь идет о дата-центрах и электромобилях.

Дата-центры - вычислительные технологии сегодняшнего дня - не только потребляют столько же электричества, сколько целый жилой микрорайон города, но и выделяют огромные объемы тепла. Кроме того, сложно представить, как высоко в самом ближайшем будущем поднимут уровень энергопотребления электрокары - очень перспективные, но пока непригодные для повсеместного применения разработки. Данные проблемы заставляют лучшие умы современности искать новые, экономически выгодные способы выработки электроэнергии, минимизирующие негативное влияние на биосферу. Многие технологии уже активно эксплуатируются на всех континентах. На основе других пока созданы только экспериментальные установки - их творцам еще предстоит доказать рациональность своих идей. Но, возможно, именно за самыми фантастическими методами - будущее нашей планеты.

Солнечная энергия

Гелиоэнергетика подразумевает непосредственное использование солнечного излучения для получения энергии в каком-либо виде. Как и ветер, солнце является ее возобновляемым источником.

Солнечные батареи на основе фотоэлементов, преобразующих энергию фотонов в электричество, не вырабатывают никаких вредных отходов. Главным их преимуществом является возможность комбинирования с тепловыми машинами, что позволяет обеспечить человека не только электричеством, но и отоплением и горячей водой. Компании First Solar, Suntech и Sharp составляют тройку лидеров рынка фото-элементов. Солнечные электростанции (СЭС) широко распространены в Германии, Испании и Японии. К сожалению, в 2010 году на долю гелиоэнергетики приходилось лишь 0,1% всего выработанного в мире электричества, потому что у данного метода есть свои недостатки. Солнечные батареи дорогостоящие (производство фотоэлементов с высоким КПД требует немалых затрат), к тому же их эффективность напрямую зависит от погоды и времени суток. Кроме того, фотоэлементы на основе кадмия сложны в утилизации. Тем не менее миниатюрные солнечные батареи в последнее время широко используются в электронике.

Получение электроэнергии из волн


Мощью волн восхищались еще древнегреческие поэты и философы. Современные специалисты более практичны: они применяют энергию волн не только для выработки электричества, но и опреснения воды в регионах с чрезмерно сухим климатом. В теории вода обладает намного большей кинетической энергией, чем воздух, что позволяет получать в разы больше электричества. Оборудование для строительства волновых электростанций проектируют Marine Current Turbine, Wavegen, Ocean Power Delivery и другие предприятия. Подобные решения идеальны для государств с большой протяженностью морского побережья и сильными порывами ветра. К примеру, волновая электростанция Oyster в Великобритании использует вырабатываемую электроэнергию для получения водорода и алюминия.

Водород и сероводород


Водород является полностью безотходным источником электроэнергии, ведь в результате его горения помимо большого количества тепла выделяется только вода (Н2О) - естественное и совершенно безвредное для окружающей среды вещество. Ведущие автомобилестроительные концерны - Daimler, Honda, General Motors, Hyundai и Fiat - уже выпускают автомобили, двигатель внутреннего сгорания которых способен работать на водороде. Япония готовит к введению в эксплуатацию первый в мире поезд на водороде, а в Германии уже поставлены на конвейер подводные лодки класса U-212 с водородными топливными элементами Siemens. В США идет строительство электростанций на водороде FutureGen мощностью 275 МВт, Китай готовит свой ответ - электростанцию GreenGen со вдвое более высокой мощностью.

Оба проекта применяют технологию газификации угля, которая на данный момент является самой дешевой - $2 (16 гривен) за килограмм водорода. Сырьем для его получения также служит сероводород (H2S) - в глубинных водах морей и океанов его концентрация очень высока. Переработка сероводорода в водород не только позволит получить большие объемы топлива для транспортных средств и электростанций, но и предотвратит повышение концентрации этого ядовитого вещества в морских водах.

Энергия из космоса

Все ранее описывавшиеся альтернативные источники электроэнергии давно прошли этап экспериментальных установок и реально функционируют, принося ощутимую пользу.

Чего нельзя сказать об этом варианте: он все еще балансирует на тонкой грани между произведениями классиков научной фантастики и новейшими технологиями.

Речь идет о космической энергетике. Данная отрасль тесно связана с гелиоэнергетикой, так как использует аналогичные солнечные батареи на основе фотоэлементов. Разница только в одном: исполинского размера солнечные батареи должны расположиться на земной орбите, откуда вырабатываемый ток будет передаваться в виде радиоволн. Трудность проведения практических экспериментов препятствует быстрому развитию данного типа энергетики, ведь позволить себе запустить на орбиту тестовые установки могут только страны, имеющие собственные космодромы. К тому же пока неясно, как именно инженеры планируют минимизировать вред от гигаватт энергии, которая в виде радиоволн хлынет в земную атмосферу, и без того сильно перегруженную спутниковым телевидением и сотовой связью. В целом, космическая энергетика пока является скорее экспериментом, и в ближайшие десятилетия ей предстоит продемонстрировать свой потенциал. Но уже сейчас ясно, что вскоре человечеству станет не хватать электроэнергии, вырабатываемой только на Земле, - придется искать ее источники за пределами планеты.

Получение электроэнергии из биотоплива


Схема автомобиля, работающего на биогазе и обычном топливе Ошибочно называть биотопливом только продукты переработки стеблей и семян растений. На самом деле человек использует простейшее твердое биотопливо еще со времен зарождения цивилизации. Речь идет, конечно же, о дереве. Сейчас древесина расходуется все реже: это слишком ценный материал. На смену ей пришли брикеты из прессованных стружек. Но будущее все же не за твердым, а за жидким биотопливом.

Биоэтанол получают путем переработки рапса, кукурузы и сахарного тростника, биометанол - в результате брожения фитопланктона, биодизель - из животных и растительных жиров. Чаще всего биотопливо применяется как заменитель бензина, но во многих странах тепловые электростанции (ТЭС) перешли на него с мазута и угля. Биоэтанол, производство которого сконцентрировано в Бразилии и США, покрывает 1,5% глобальной потребности в жидком топливе. Эта цифра может показаться незначительной, но, по оценкам ведущих аналитиков, остановка выработки всех видов биотоплива приведет к 15-процентному росту стоимости барреля нефти. В 2010 году Европейский союз ввел унифицированную стандартизацию биотоплива - EN-PLUS.

Но и в случае с этим источником энергии не обошлось без негатива. Мировую общественность волнует проблема растущего потребления биотоплива, ведь поля с плодородной землей все чаще засеивают не продовольственными культурами (пшеницей, рожью или рисом), а рапсом.

Действующие экспериментальные технологии

Существует множество проектов по добыче экологически чистой электроэнергии, которые обладают большим потенциалом, но все еще находятся на стадии разработки. Одним из самых перспективных на сегодняшний день является получение биотоплива третьего поколения в результате переработки особого вида водорослей с высоким содержанием масла. По своим энергетическим характеристикам они значительно превосходят другое сырье. Такие водоросли не распространены широко в естественной среде, но очень быстро растут в искусственных водоемах. Однако основная технологическая трудность заключается в том, что водоросли очень чувствительны к изменениям температуры - она должна поддерживаться на определенном уровне с отсутствием даже минимальных колебаний.

Антиматерия

Давней мечтой ученых является получение антивещества. Любое вещество состоит из частиц, а антивещество - из античастиц. Эти две субстанции полностью противоположны: в обычном веществе протоны в атоме имеют положительный заряд, а электроны - отрицательный, в антивеществе все наоборот - антипротоны с отрицательным зарядом и позитроны с положительным. Частицы антивещества и обычного вещества при контакте аннигилируют - исчезают, и при этом выделяется огромное количество энергии. Тонна антивещества могла бы покрыть годовую энергетическую потребность всей планеты.

Резервация и хранение электроэнергии

Избыток вырабатываемой энергии в одно время и недостаток ее в другое свойственны всем без исключения непостоянным источникам - ветру, солнцу, волнам и т. п.

Теоретически у этой проблемы есть довольно простое решение - использовать аккумуляторы. Но на практике все намного сложнее, чем кажется на первый взгляд.

Необходимость применения батарей в разы увеличивает себестоимость мегаватта вырабатываемой электроэнергии.

На сегодняшний день широко распространены свинцово-кислотные, никель-металл-гидридные, литий-ионные и литий-полимерные аккумуляторы. Свинцово-кислотные, самые распространенные в мире, отличаются высокой ЭДС (электродвижущей силой) и широким диапазоном рабочих температур (от –40 до +40 °С). Именно они чаще всего применяются в качестве аварийных источников электроэнергии. Зато в пользу литий-ионных и литий-полимерных аккумуляторов говорят их миниатюрные размеры и простота в обслуживании. Но стоит отметить, что они подвержены эффекту старения, и продолжительность их жизненного цикла оставляет желать лучшего.

Вывод

Несмотря на серьезные инвестиции в развитие альтернативных источников энергии, сейчас они удовлетворяют менее 1% глобальных нужд человечества в электричестве. Но этот показатель с каждым годом стабильно растет из-за быстро снижающейся себестоимости мегаватта электроэнергии, вырабатываемой подобными методами. На данный момент больше всего средств в развитие экологически чистой энергетики вкладывают Китай, США, Великобритания и Индия. К 2020 году глобальные инвестиции в возобновляемые источники энергии должны вырасти до 1,7 триллиона долларов.