Унч в импортном тв типа an. Усилитель низкой частоты (УНЧ) на микросхеме TDA7250. Пример использования TDA7294

Старый друг лучше новых двух!
Пословица



Интегральная микросхема TDA2822M благодаря небольшому числу элементов обвязки относится к числу простых усилителей, которые можно собрать за короткое время, подключить к МР3 плееру, ноутбуку, радиоприемнику – и тут же оценить результат своей работы.

Вот как привлекательно выглядит описание :
«TDA2822M - стереофонический, двухканальный низковольтный усилитель для портативной техники и пр.
Возможно мостовое включение, использование в качестве наушникового или контрольного усилителя и многое другое.
Рабочее напряжение питания: от 1,8 В до 12 В , мощность до 1 Вт на канал, искажения до 0,2%. Радиатор не требуется.
Вопреки суперминиатюрным размерам выдаёт честный бас. Идеальный чип для бесчеловечных опытов начинающих».

Своей статьёй я постарался помочь коллегам-радиолюбителям сделать эксперименты с этим интересным чипом более осознанными и гуманными.

Разберемся с корпусом микросхемы

Различают две микросхемы: одну TDA2822, другую с индексом «М» - TDA2822М.
Интегральная микросхема TDA2822 (Philips) предназначена для создания простых усилителей мощности звуковой частоты. Допустимый диапазон питающих напряжений 3…15 В; при Uпит=6 В, Rн=4 Ом выходная мощность составляет до 0,65 Вт на канал, в полосе частот 30 Гц…18 кГц. Корпус микросхемы Powerdip 16.
Микросхема TDA2822M выполнена в ином корпусе Minidip 8 и имеет отличающуюся цоколевку при несколько меньшей максимальной рассеиваемой мощности (1 Вт против 1,25 Вт у TDA2822).

Обратите внимание, что другие цепи встроенной защиты выходного каскада отсутствуют, что сделано из соображений лучшего использования источника питания, к сожалению, в ущерб надежности.

Выводы 5 и 8 микросхемы соединяются с общим проводом по переменному току. В этом случае коэффициент передачи усилителя с отрицательной обратной связью составит:

Ku=20lg(1+R1/R2)= 20lg(1+R5/R4)=39 дБ.

Структурная схема ИС представлена на рис. 2.


Рис. 2. Структурная схема TDA2822M

Экспериментально определено, что сумма сопротивлений резисторов R1+R2 и R5+R4 равна 51,575 кОм. Зная коэффициент усиления, несложно вычислить, что R1=R5=51 кОм, а R2=R4=0,575 кОм.

Чтобы уменьшить коэффициент усиления микросхемы с ООС, обычно последовательно с R2 (R4) включают дополнительный резистор. В данном случае такому схемотехническому приему «мешают» открытые транзисторные ключи на транзисторах Q12 (Q13).

Но даже, если предположить, что ключи не оказывают влияния на коэффициент передачи с обратной связью, маневр по уменьшению коэффициента усиления незначителен – не более 3 дБ; в противном случае не гарантируется устойчивость усилителя, охваченного ООС.

Поэтому можно поэкспериментировать с изменением коэффициента передачи усилителя, учтя, что сопротивление дополнительного резистора лежит в пределах 100…240 Ом.


Рис. 3. Принципиальная схема экспериментального стереофонического усилителя

Усилитель имеет следующие характеристики:
Напряжение питания Uп=1,8…12 В
Выходное напряжение Uвых=2…4 В
Потребляемый ток в режиме покоя Io=6…12 мА
Выходная мощность Pвых=0,45…1,7 Вт
Коэффициент усиления Ku=36…41 (39) дБ
Входное сопротивление Rвх=9,0 кОм
Переходное затухание между каналами 50 дБ.

С практической точки зрения для надежной эксплуатации усилителя целесообразно установить напряжение питания не более 9 В; при этом для нагрузки Rн=8 Ом выходная мощность составит 2х1,0 Вт, для Rн=16 Ом – 2х0,6 Вт и для Rн=32 Ом – 2х0,3 Вт. При сопротивлении нагрузки Rн=4 Ом оптимальным будет напряжение питания до 6 В (Pвых=2х0,65 Вт).

Коэффициент усиления микросхемы в 39 дБ даже с учетом небольшой корректировки резисторами R5, R6 в сторону уменьшения, оказывается чрезмерным для современных источников сигнала напряжением 250…750 мВ. Например, для Uп=9 В, Rн=8 Ом чувствительность со входа составляет около 30 мВ.

На рис. 4, а показана схема включения усилителя, позволяющая подключить персональный компьютер, MP3 плеер или радиоприемник с уровнем сигнала около 350 мВ. Для устройств с выходным сигналом 250 мВ сопротивления резисторов R1, R2 необходимо уменьшить до 33 кОм; при уровне выходного сигнала 0,5 В следует поставить резисторы R1=R2=68 кОм, 0,75 В – 110 кОм.

Сдвоенным резистором R3 устанавливают необходимый уровень громкости. Конденсаторы С1, С2 – переходные.


Рис. 4. Схема подключения УМЗЧ: а) - к акустическим системам, б) – к головным телефонам (наушникам)

На рис. 4, б показано подключение к усилителю разъема для наушников. Резисторы R4, R5 устраняют щелчки при подключении стереотелефонов, резисторы R6, R7 ограничивают уровень громкости.

В процессе экспериментов я пытал питал УМЗЧ как от стабилизированного блока питания (на интегральной микросхеме и транзисторе BD912), рис. 5, так и от аккумуляторной батареи емкостью 7,2 А ч на напряжение 12 В с источником питания на фиксированные напряжения, рис. 6.

Напряжение питания подается по возможности короткой парой свитых вместе проводов.
Правильно собранное устройство в наладке не нуждается.

Исключён фрагмент. Наш журнал существует на пожертвования читателей. Полный вариант этой статьи доступен только


Рис. 5. Принципиальная схема стабилизированного блока питания

Исключён фрагмент. Наш журнал существует на пожертвования читателей. Полный вариант этой статьи доступен только


Рис. 6. Аккумуляторная батарея – лабораторный источник питания

Субъективная оценка уровня шумов показала, что при установке регулятора громкости на максимальный уровень шум едва заметен.
Субъективная оценка качества звуковоспроизведения производилась без сравнения с эталоном. Результат – звук неплохой, прослушивание фонограмм не вызывает раздражения.

Я ознакомился с форумами по микросхеме в Интернете, на которых встретил множество сообщений о поисках непонятных источников шумов, самовозбуждения и других неприятностей.
В результате разработал печатную плату, отличительной особенностью которой является заземление элементов «звездой». Фотовид печатной платы из программы Sprint-Layout показан на рис. 7.

Исключён фрагмент. Наш журнал существует на пожертвования читателей. Полный вариант этой статьи доступен только


Рис. 7. Размещение деталей на экспериментальной печатной плате

При экспериментах на этой печатке ни с одним из описанных на форумах артефактов встретиться не удалось.

Детали стереофонического УМЗЧ на микросхеме TDA2822M
Печатная плата рассчитана на установку самых распространенных деталей: резисторов МЛТ, С2-33, С1-4 или импортных мощностью 0,125 или 0,25 Вт, пленочных конденсаторов К73-17, К73-24 или импортных МКТ, импортных оксидных конденсаторов.

Я применил недорогие, но надежные электролитические конденсаторы с низким импедансом, большим сроком службы (5000 часов) и возможностью работы при температуре до +105°С фирмы Hitano серий ESX, EHR и EXR. Следует помнить, что чем больше внешний диаметр конденсатора в серии, тем выше срок его службы.

Микросхема DA1 установлена в восьмивыводную панельку. Микросхему TDA2822M можно заменить на KA2209B (Samsung) или К174УН34 (ОАО «Ангстрем», г. Зеленоград) . ЧИП конденсатор С8 (SMD) размещен со стороны печатных дорожек.





R5, R6 - Рез.-0,25-160 Ом (Коричневый, синий, коричневый, золотистый) - 2 шт.,

С3 - С5 - Конд.1000/16V 1021+105°C - 3 шт.,
С6, С7 - Конд.0,1/63V К73-17 - 2 шт.,
С8 - Конд.0805 0,1µF X7R smd – 1 шт.

Многие радиолюбители не без основания полагают, что лучше всего включать микросхемы в соответствии с Datasheet и использовать предлагаемые разработчиками печатные платы.
Ниже приведены схемы и печатные платы, выполненные на основе документации с единственной доработкой - для повышения устойчивости работы усилителя параллельно оксидному конденсатору по цепи питания включен пленочный (рис. 8, 9).

Исключён фрагмент. Наш журнал существует на пожертвования читателей. Полный вариант этой статьи доступен только


Рис. 8. Типовая схема включения микросхемы в стереофоническом режиме

Исключён фрагмент. Наш журнал существует на пожертвования читателей. Полный вариант этой статьи доступен только


Рис. 9. Размещение элементов типового стереофонического УМЗЧ

Детали типового стереофонического УМЗЧ
При установке элементов на печатную плату советую воспользоваться простыми технологическими приемами, описанными в Датагорской статье .

DA1 - TDA2822M ST Корпус: DIP8-300 - 1 шт.,
SCS-8 Розетка dip узкая - 1 шт.,
R1, R2 - Рез.-0,25-10к (Коричневый, черный, оранжевый, золотистый) - 2 шт.,
R3, R4 - Рез.-0,25-4,7 Ом (Желтый, фиолетовый, золотистый, золотистый) - 2 шт.,
С1, С2 - Конд.100/16V 0611 +105°C - 2 шт.,
С3 - Конд.10/16V 0511 +105°C (Емкость может быть увеличена до 470 мкФ) - 1 шт.,
С4, С5 - Конд.470/16V 1013+105°C - 2 шт.,
С6 – С8 - Конд.0,1/63V К73-17 - 3 шт.


Рис. 10. Принципиальная схема экспериментального мостового усилителя

В отличие от схемы стереофонического усилителя (рис. 3), в которой предполагается, что разделительные конденсаторы имеются на выходе предыдущего устройства, на входе мостового усилителя включен разделительный конденсатор, определяющий нижнюю частоту, воспроизводимую усилителем.

В зависимости от конкретного применения емкость конденсатора С1 может быть от 0,1 мкФ (fн = 180 Гц) до 0,68 мкФ (fн = 25 Гц) и более. При емкости С1, указанной на принципиальной схеме нижняя частота воспроизводимых частот составляет 80 Гц.

Внутренние резисторы, подключенные к инвертирующим входам усилителя через разделительный конденсатор С2 соединены между собой, что обеспечивает на выходах равные по величине, но противоположные по фазе сигналы.

Конденсатор С3 осуществляет коррекцию частотной характеристики усилителя на высоких частотах.

Поскольку потенциалы выходов усилителя по постоянному току равны, стало возможным непосредственное подключение нагрузки, без разделительных конденсаторов.

Назначение остальных элементов описывалось ранее.

Для стереофонического варианта потребуется два мостовых усилителя на микросхеме TDA2822M. Схему включения несложно получить, взяв за основу рис. 4.

Надежная работа усилителя в мостовом режиме обеспечивается выбором соответствующего напряжения питания в зависимости от сопротивления нагрузки (см. таблицу).

Все детали мостового усилителя размещены на печатной плате размерами 32 х 38 мм из односторонне фольгированного стеклотекстолита толщиной 2 мм. Чертеж возможного варианта платы изображен на рис. 11.


Рис. 11. Размещение элементов на плате мостового усилителя


DA1 - TDA2822M ST Корпус: DIP8-300 - 1 шт.,
SCS-8 Розетка dip узкая - 1 шт.,
R1 - Рез.-0,25-10к (Коричневый, черный, оранжевый, золотистый) - 1 шт.,
R2, R3 - Рез.-0,25-4,7 Ом (Желтый, фиолетовый, золотистый, золотистый) - 2 шт.,
С1 - Конд.0,22/63V К73-17 - 1 шт.,
С2 - Конд.10/16V 0511 +105°C - 1 шт.,
С3 - Конд.0,01/630V К73-17 - 1 шт.,
С4 – С6 - Конд.0,1/63V К73-17 - 3 шт.,
С7 - Конд.1000/16V 1021+105°C - 1 шт.

Принципиальная схема типового мостового УМЗЧ и размещение элементов на печатной плате показаны соответственно на рис. 12 и 13.


Адрес Email - yooree (at) inbox.ru
(замените (at) на @)

Стереоусилитель 2х1 Вт

На рис. 1 приведена принципиальная схема стереофонического усилителя с выходной мощностью до 1 Вт на канал, собранного на одной интегральной микросхеме TDA7053 производства фирмы Philips в корпусе DIP-16, а также двух переменных резисторов, двух керамических и одного оксидного конденсаторов. Особенностью усилителя является наличие в каждом канале не одной, а двух динамических головок сопротивлением по 8 Ом. Здесь возможно использование самых распространенных головок 1ГД-40 старого производства или подобных по конструкции головок с эллиптическим диффузором, например 2ГДШ-2-8. Другой особенностью усилителя является то, что его выходы нигде не соединены с общим проводом питания. Это характерно для мостовых усилителей мощности с бесконденсаторным выходом.

Рис. 1. Принципиальная схема стереофонического УМЗЧ на ИМС TDA7053 с регуляторами громкости

Интегральная микросхема рассчитана на работу при напряжении питания 3-15 В и токе покоя около 5 мА. Минимальное сопротивление нагрузки - 8 Ом.

Такой усилитель удобно и экономично подключить к карманному плейеру и использовать для музыкального сопровождения. В этом случае целесообразно упростить конструкцию усилителя, убрав регуляторы громкости, поскольку они уже имеются в плейере. Измененная принципиальная схема усилителя приведена на рис. 2. Здесь на входе каждого канала установлен делитель напряжения из двух резисторов во избежание перегрузки усилителя. Сигналы снимаются с гнезда для внешнего телефона плейера с помощью двойного кабеля от стереофонического телефона, вышедшего из строя.

Рис. 2. Принципиальная схема стереофонического УМЗЧ на ИМС TDA7053 с нерегулируемыми входами

При повторении конструкций данных усилителей можно воспользоваться монтажными схемами и чертежами печатных плат, приведенными на рис. 3 и 4, а также рис. 5 и 6 соответственно.

Рис. 3. Монтажная схема УМЗЧ на ИМС TDA7053

Рис. 4 . Печатная плата УМЗЧ на ИМС TDA7053

Рис. 5. Монтажная схема УМЗЧ на ИМС TDA7053 с нерегулируемыми входами

Рис. 6. Печатная плата УМЗЧ на ИМС TDA7053 с нерегулируемыми входами

Усилитель на выходную мощность до 5 Вт

На рис. 7 дана принципиальная схема самого простого, надежного, экономичного и широко распространенного в промышленной аппаратуре усилителя мощности звуковой частоты на отечественной интегральной микросхеме К174УН14, имеющей десятки аналогов за рубежом, среди которых самым популярным является ТДА2003. Микросхема предназначена для работы при напряжении источника питания 8-18 В и сопротивлении нагрузки не менее 2 Ом. При этом достигается равномерное усиление сигнала в полосе частот 30 Гц - 20 кГц, а ток покоя составляет 40-60 мА. Чувствительность усилителя - около 50 мВ. Микросхема снабжена собственным теплоотводом, допускающим работу с выходной мощностью не более 2 Вт. Для получения большей мощности обязательно требуется установка дополнительного пластинчатого либо ребристого или игольчатого теплоотвода.


Рис. 7. Принципиальная схема УМЗЧ на ИМС TDA2003

Большое усиление микросхемы требует принятия определенных мер по повышению стабильности и устойчивости ее работы. Это достигается двумя способами. Во-первых, для предотвращения самовозбуждения на высоких и ультравысоких частотах громкоговоритель шунтируется последовательно соединенными низкоомным постоянным резистором R4 типа С1-4 и керамическим конденсатором С6. Во-вторых, коэффициент усиления во всей полосе воспроизводимых частот стабилизирован за счет наличия на выходе усилителя делителя напряжения сигнала 1:100 и подачей с него напряжения отрицательной обратной связи на инвертирующий вход усилителя. Через оксидный конденсатор большой емкости С4 громкоговоритель подключен к выходу усилителя через стандартный акустический разъем и своим одним выводом соединен с общим проводом питания, то есть заземлен.

На рис. 8 и 9 приведены схема размещения навесных деталей на печатной плате, а также чертеж самой платы. Интегральная микросхема монтируется на дополнительном теплоотводе и соединяется с платой посредством тонких изолированных гибких проводов в тефлоновой, то есть фторопластовой изоляции. По возможности длина проводников должна быть минимальной. Обязательным условием нормальной работы усилителя является свободный доступ воздуха к его теплоотводу.

Рис. 8. Монтажная схема УМЗЧ на ИМС TDA2003

Рис. 9. Печатная плата УМЗЧ на ИМС TDA2003

Стереофонический усилитель 2х4 Вт

На базе интегральной микросхемы К174УН14 отечественная промышленность выпускает стереофонический усилитель с выходной мощностью до 4 Вт на каждый канал. Особенностью данной микросхемы является то, что два одинаковых кремниевых кристалла, на которых она основана, помещены в общий корпус с небольшими металлическими теплоотводами. Специально для нее выпускается дополнительный игольчатый теплоотвод, способный обеспечивать нормальный тепловой режим работы обоих каналов усилителя при выходной мощности до 4 Вт на каждый канал. Внешне эта интегральная микросхема ничем не отличается от широко распространенных в любительской практике микросхем К174УН7 и К174УН9, но по своим возможностям превосходит их. Микросхема К174УН20 рассчитана на работу с источником питания напряжением до 12 В при токе покоя 65 мА и сопротивлении нагрузки 4 или 8 Ом. Равномерное усиление сигнала производится в полосе частот 50 Гц - 16 кГц, что вполне приемлемо для большинства любительских конструкций. Причем если выходная мощность на каждый канал не будет превышать 0,5-0,8 Вт, то можно обойтись без дополнительного теплоотвода, в противном случае он необходим. Если специального игольчатого теплоотвода приобрести не удастся, его можно заменить пластинчатым, например, из листового алюминия или меди толщиной 1,0-1,5 мм. Его площадь должна быть не менее 9-10 см2 для каждого металлического выступа с отверстием под винт. Теплоотвод можно оформить в виде уголка, что сэкономит место на плате.


Рис. 10. Схема стереофонического УМЗЧ на ИМС К174УН20

На рис. 10 приведена принципиальная схема стереофонического усилителя на основе микросхемы К174УН20. Он обеспечивает выходную мощность 4 Вт по каждому каналу при напряжении питания 12 В и сопротивлении нагрузки 4 Ом. При увеличении сопротивления нагрузки до 8 Ом в каждом канале выходная мощность уменьшается до 2,2 Вт на канал при том же напряжении питания.

Особенностью схемы является отсутствие плавных регуляторов громкости, которые заменены делителями входного напряжения на двух резисторах R1, R2 и R3, R4 с коэффициентом деления 1:2. Это сделано с целью подключения к выходу карманного аудиоплейера входа данного усилителя. В таком случае монтаж на печатной плате может иметь вид, показанный на рис. 11 и 12. При необходимости усилитель разрешается снабдить светодиодным индикатором включения питания, что бывает весьма полезно при работе от автономного источника. Это легко сделать с помощью постоянного резистора R5 и светодиода HL1, подключенных к источнику питания после выключателя.


Рис. 11. Монтаж стереофонического УМЗЧ на ИМС К174УН20

Рис. 12. Печатная плата стереофонического УМЗЧ на ИМС К174УН20

Двухканальный усилитель 2х10 Вт

На рис. 13 приведена принципиальная схема двухканального усилителя мощности звуковой частоты на одной интегральной микросхеме фирмы Philips TDA7370. При наличии дополнительного теплоотвода и достаточно мощном источнике напряжения постоянного тока 12 В он способен развивать номинальную выходную мощность по каждому каналу 10 Вт при коэффициенте нелинейных искажений 1%. Особенностью усилителя является очень малое число дополнительных навесных деталей - всего четыре конденсатора и два переменных резистора. Два громкоговорителя сопротивлением 4 или 8 Ом подключены непосредственно к выводам микросхемы без громоздких переходных конденсаторов большой емкости, что имеет место во многих других усилителях мощности звуковой частоты. Известно, что их гордо называют "усилителями с бестрансформаторным выходом", как бы в упрек когда-то существовавшим усилителям на электронных лампах, имевшим громоздкие выходные трансформаторы. Данный усилитель с полным правом можно называть усилителем мощности с бестрансформаторным и бесконденсаторным выходом. Аналогичные усилители уже описывались ранее, но они были малой мощности, всего по 1 Вт на канал. Именно это существенное отличие требует в данном усилителе обязательной установки эффективного дополнительного теплоотвода, к которому плотно (под винт МЗ) прижимается интегральная микросхема. Для этой цели подходят стандартные теплоотводы из дюралюминия под транзисторы КТ818, КТ819. В крайнем случае можно использовать пластину из дюралюминия размером 100х100 мм и толщиной 2-4 мм. Не рекомендуется даже на мгновение включать усилитель без такого теплоотвода, так как при работе с номинальной мощностью внутри микросхемы развивается тепловая мощность 30 Вт, как у паяльника.

Рис. 13. Принципиальная схема стереофонического УМЗЧ на ИМС TDA7370

Другой особенностью, благодаря которой удается обходиться без конденсаторов на выходе, является мостовая схема выходных каскадов, когда громкоговорители не имеют контакта с общим заземленным проводом. Если такое все же случится, то микросхеме грозит выход из строя. Поэтому как при монтаже деталей, так и в процессе эксплуатации необходимо следить за тем, чтобы ни один из проводов, идущих к громкоговорителям, не имел контакта с общим проводом питания.

Расположение деталей на печатной плате показано на рис. 14 и 15. Усилитель нормально работает при изменении напряжения питания от 9 до 20 В и сопротивлении нагрузки каждого канала не менее 4 Ом. Источник питания должен обеспечивать ток до 3,5 А при напряжении 12В. Если он обеспечит ток до 3,5 А при напряжении 12 В, с громкоговорителями сопротивлением по 4 Ом можно получить по 10 Вт мощности с каждого канала. Если источник может дать не более 2 А при том же напряжении, следует применить громкоговорители сопротивлением 8 Ом. Тогда выходная мощность каждого канала составит 6 Вт.

Рис. 14. Монтажная схема стереофонического УМЗЧ на ИМС TDA7370

Рис. 15. Печатная плата стереофонического УМЗЧ на ИМС TDA7370

С учетом выделения большого количества тепла конструкция усилителя должна обеспечивать свободный приток свежего воздуха к микросхеме и дополнительному теплоотводу. Это будет гарантией надежной долговременной работы усилителя.

Усилитель звуковой частоты на 20 Вт

Усилитель, принципиальная схема которого приведена на рис. 16, также выполнен по бестрансформаторной и бесконденсаторной схеме мостового оконечного каскада со всеми присущими ей достоинствами и недостатками. Главное отличие его от предыдущего в том, что имеется только один канал усиления на 20 Вт. Такой усилитель потребляет большой ток (до 3,5 А), поэтому его можно питать или от достаточно мощного выпрямителя, или от автомобильного аккумулятора напряжением 13,6 В.

Рис. 16. Принципиальная схема монофонического УМЗЧ на ИМС TDA7240A

Расположение деталей на печатной плате показано на рис. 17 и 18. Интегральная микросхема устанавливается на дополнительном теплоотводе (стандартном или самодельном), как упоминалось выше, под винт МЗ. Для улучшения отвода тепла рекомендуется смазать соприкасающиеся поверхности теплоотвода и микросхемы тонким слоем вазелина. Как и в предыдущем случае, можно увеличить сопротивление нагрузки с 4 до 8 Ом, снизив, таким образом, выходную мощность до 10-12 Вт и потребляемый ток до 2 А. При отсутствии сигнала потребляемый ток составляет 80-100 мА, что является первым признаком работоспособности усилителя. Значительно больший или меньший ток свидетельствует либо об ошибке в монтаже, либо о неисправности деталей, включая микросхему. Однако опыт применения подобных микросхем при использовании исправных деталей показывает, что усилитель начинает работать сразу и не требует дополнительных регулировок. Его чувствительность равна 50-80 мВ, а полоса воспроизводимых частот составляет 20 Гц - 20 кГц.

Рис. 17. Монтажная схема монофоническою УМЗЧ на ИМС TDA7240A

Рис. 18. Печатная плата монофонического УМЗЧ на ИМС TDA7240A

Будут вопросы, пожелания, предложения - пишите. Юрий yooree (at) inbox.ru

Усилитель низкой частоты (УНЧ) это такое устройство для усиления электрических колебаний, соответствующих слышимому человеческим ухом диапазону частот, т.е УНЧ должны усиливать в диапазоне частот от 20 ГЦ до 20 кГц, но некоторые УНЧ могут иметь диапазон и до 200 кГц. УНЧ может быть собран в виде самостоятельного устройства, или использоваться в более сложных устройствах - телевизорах, радиоприёмниках, магнитолах и т.п

Особенность этой схемы в том, что 11 вывод микросхемы TDA1552 управляет режимами работы - Обычным или MUTE.

С1, С2 - проходные блокировочные конденсаторы, используются для отсекания постоянной составляющей синусоидального сигнала. Электролитические конденсаторы лучше не использовать. Микросхему TDA1552 желательно разместить на радиаторе с использованием теплопроводящей пасты.

В принципе представленные схемы является мостовыми, т.к в одном корпусе микросборки TDA1558Q имеется 4 канала усиления, поэтому выводы 1 - 2, и 16 - 17 соединены попарно, и на них поступают входные сигналы обоих каналов через конденсаторы С1 и С2. Но если вам нужен силитель на четыре колонки, тогда можно воспользоваться вариантом схемы ниже, правда мощность при этом будет в 2 раза меньше на канал.

Основа конструкции микросборка TDA1560Q класса H. Максимальная мощность такого УНЧ достигает 40 Вт, при нагрузки в 8 Ом. Такая мощность обеспечивается увеличенным напряжением примерно в два раза, благодаря работе емкостей.

Выходная мощность усилителя в первой схеме собранного на TDA2030- 60Вт при нагрузке 4 Ома и 80Вт при нагрузке 2 Ома; TDA2030А 80Вт при нагрузке 4 Ома и 120Вт при нагрузке 2 Ома. Вторая схема рассмотренного УНЧ уже с выходной мощностью 14 Ватт.


Это типовой двух канальный УНЧ. С небольшой обвязкой из пассивных радиокомпонентов на этой микросхеме можно собрать превосходный стереоусилитель с выходной мощностью на каждом канале 1 Вт.

Микросборка TDA7265 - представляет из себя достаточно мощный двухканальный Hi-Fi усилитель класса АВ в типовом корпусе Multiwatt, микросхема нашла свою нишу в высококачественной стерео технике, Hi-Fi класса. Проста схемы включения и отличные параметры сделали TDA7265 прекрасно сбалансированным и великолепным решением при построении радиолюбительской высококачественной аудио аппаратуры.

Сначала был собран тестовый вариант на макетной плате в точности как по даташиту по ссылке выше, и успешно испытан на колонках S90. Звук неплохой, но чего то не хватало. Через некоторое время решил переделать усилитель по измененной схеме.

Микросборка представляет собой счетверенный усилитель класса AB, разработанный специально для использования в автомобильных аудиоустройствах. На основе этой микросхемы можно построить несколько качественных вариантов УНЧ с задействованием минимума радиокомпонентов. Микросхему можно посоветовать начинающим радиолюбителям, для домашней сборки различных акустических систем.

Основным достоинством схемы усилителя на этой микросборке является наличие в ней четырех независимых друг от друга каналов. Работает данный усилитель мощности в режиме AB. Ее можно применять для усиления различных стерео сигналов. При желании можно подсоединить к акустической системе автомобиля, либо персонального компьютера.

TDA8560Q является всего лишь более мощным аналогом широко известной радиолюбителям микросхемы TDA1557Q. Разработчики только усилили выходной каскад, благодаря чему УНЧ отлично подходит к двух омной нагрузке.

Микросборка LM386, это готовый усилитель мощности, который можно применять в конструкциях с низким питающим напряжением. Например при питании схемы от аккумуляторной батареи. LM386 имеет коэффициент усиления по напряжению около 20. Но подключая внешние сопротивления и емкости можно регулировать усиление до 200, а напряжение на выходе автоматически становится равным половине питающего.

Микросборка LM3886 является усилителем высокого качества с мощностью на выходе 68 ватт при 4 Ом нагрузке или 50 ватт на 8 Ом. В пиковый момент мощность на выходе способна достигать значения в 135 Вт. К микросхеме применим широкий диапазон напряжений от 20 до 94 вольт. Причем можно использовать как двуполярные, так и однополярные блоки питания. Коэффициент гармоник УНЧ составляет 0,03 %. Причем это по всему частотному интервалу от 20 до 20000 Гц.


В схеме используются две ИС в типовом включении - КР548УH1 в качестве микpофонного усилителя (устанавливается в тангенте) и (TDA2005) в мостовомвключении в качестве оконечного усилителя (устанавливается в коpпусе сиpены вместо pодной платы). В качестве акустического излучателся используется доpаботанная сиpена от сигнализации с магнитной головкой (пьезоизлучатели не годятся). Доpаботка заключается в pазбиpании сиpены и выкидывании pодной пищалки с усилителем. Микpофон - электpодинамический. Пpи использовании электpетного микpофона (напpимеp, от китайских телефонных тpубок), точку соединения микpофона с конденсатоpом нужно чеpез pезистоp ~4.7К подключить к +12В (после кнопки!). Резистоp 100К в цепи обpатной связи К548УH1 пpи этом лучше поставить сопpотивлением ~30-47К. Данный pезистоp используется для настpойки гpомкости. Микpосхему TDA2004 лучше установить на небольшой pадиатоp.

Испытывать и эксплуатиpовать - с излучателем под капотом, а тангентой в салоне. Иначе неизбежен визг из-за самовозбуждения. Подстpоечным pезистоpом устанавливается уpовень гpомкости, чтобы не было сильных искажений звука и самовозбуждения. Пpи недостаточной гpомкости (напpимеp, плохой микpофон) и явном запасе мощности излучателя можно повысить усиление микpофонного усилителя, увеличив в несколько pаз номинал подстpоечника в цепи обpатной связи (тот, котоpый по схеме 100К). По-хорошему - нужен бы еще пpимамбас, не дающий схеме самовозбуждаться - фазосдвигающая цепочка какая-нибудь или фильтp на частоту возбуждения. Хотя схема и без усложнений работает отлично

— несмотря на относительную простоту, обеспечивает довольно высокие параметры. Вообще-то, по правде говоря, у «микросхемных» усилителей есть ряд ограничений, поэтому усилители на «рассыпухе» могут обеспечить более высокие показатели. В защиту микросхемы (а иначе почему я и сам ее использую, и другим рекомендую?) можно сказать:

Простая и эффективная схема

  • схема очень простая
  • и очень дешевая
  • и практически не нуждается в наладке
  • и собрать ее можно за один вечер
  • а качество превосходит многие усилители 70-х … 80-х годов, и вполне достаточно для большинства применений (да и современные системы до 300 долларов могут ей уступить)
  • таким образом, усилитель подойдет и начинающему, и опытному радиолюбителю (мне, например, как-то понадобился многоканальный усилитель проверить одну идейку. Угадайте, как я поступил?).

В любом случае, плохо сделанный и неправильно настроенный усилитель на «рассыпухе» будет звучать хуже микросхемного. А наша задача — сделать очень хороший усилитель. Надо отметить, что звучание усилителя очень хорошее (если его правильно сделать и правильно питать), есть информация, что какая-то фирма выпускала Hi-End усилители на микросхеме TDA7294! И наш усилитель ничуть не хуже!!!

— это практически повторение схемы включения, предлагаемой производителем. И это неслучайно — уж кто лучше знает, как ее включать. И наверняка не будет никаких неожиданностей из-за нестандартного включения или режима работы.

Входной тракт

Входная цепочка R1C1 представляет собой фильтр нижних частот (ФНЧ), обрезающий все выше 90 кГц. Без него нельзя — ХХI век — это в первую очередь век высокочастотных помех. Частота среза этого фильтра довольно высока. Но это специально — я ведь не знаю, к чему будет подключаться этот усилитель. Если на входе будет стоять регулятор громкости, то в самый раз — его сопротивление добавится к R1, и частота среза снизится (оптимальное значение сопротивления регулятора громкости ~10 кОм, больше — лучше, но нарушится закон регулирования).

Далее цепочка R2C2 выполняет прямо противоположную функцию — не пропускает на вход частоты ниже 7 Гц. Если для вас это слишком низко, емкость С2 можно уменьшить. Если сильно увлечься снижением емкости, можно остаться совсем без низких. Для полного звукового диапазона С2 должно быть не менее 0,33 мкф. И помните, что у конденсаторов разброс емкостей довольно большой, поэтому если написано 0,47 мкф, то запросто может оказаться, что там 0,3! И еще. На нижней границе диапазона выходная мощность снижается в 2 раза, поэтому ее лучше выбирать пониже:

С2[мкФ] = 1000 / (6,28 * Fmin[Гц] * R2[кОм])

Резистор R2 задает входное сопротивление усилителя. Его величина несколько больше, чем по даташиту, но это и лучше — слишком низкое входное сопротивление может «не понравиться» источнику сигнала. Учтите, что если перед усилителем включен регулятор громкости, то его сопротивление должно быть раза в 4 меньше, чем R2, иначе изменится закон регулирования громкости (величина громкости от угла поворота регулятора). Оптимальное значение R2 лежит в диапазоне 33…68 кОм (большее сопротивление снизит помехоустойчивость).

Схема усилителя звука на микросхеме , а именно схема включения усилителя — не инвертирующая. Резисторы R3 и R4 создают цепь отрицательной обратной связи (ООС). Коэффициент усиления равен:

Ку = R4 / R3 + 1 = 28,5 раза = 29 дБ

Коэффициент усиления

Это почти равно оптимальному значению 30 дБ. Менять коэффициент усиления можно, изменяя резистор R3. Учтите, что делать Ку меньше 20 нельзя — микросхема может само возбуждаться. Больше 60 его также делать не стОит — глубина ООС уменьшится, а искажения возрастут. При значениях сопротивлений, указанных на схеме, при входном напряжении 0,5 вольт выходная мощность на нагрузке 4 ома равна 50 Вт. Если чувствительности усилителя не хватает, то лучше использовать предварительный усилитель.

Значения сопротивлений несколько больше, чем рекомендовано производителем. Это во-первых, увеличивает входное сопротивление, что приятно для источника сигнала (для получения максимального баланса по постоянному току нужно чтобы R4 было равно R2). Во-вторых, улучшает условия работы электролитического конденсатора С3. И в-третьих, усиливает благотворное влияние С4. Об этом поподробнее. Схема усилителя звука на микросхеме работает в такой последовательности: конденсатор С3 последовательно с R3 создает 100%-ю ООС по постоянному току (так как сопротивление постоянному току у него бесконечность, и Ку получается равным единице). Чтобы влияние С3 на усиление низких частот было минимально, его емкость должна быть довольно большой. Частота, на которой влияние С3 становится заметной равна:

f [Гц] = 1000 / (6,28 * R3 [кОм] * С3 [мкФ]) = 1,3 Гц

Уменьшение искажений

Эта частота и должна быть очень низкая. Дело в том, что С3 — электролитический полярный, а на него подается переменное напряжение и ток, что для него очень плохо. Поэтому чем меньше значение этого напряжения, тем меньше искажения, вносимые С3. С этой же целью его максимально допустимое напряжение выбирается довольно большим (50В), хотя напряжение на нем не превышает 100 милливольт. Очень важно, чтобы частота среза цепи R3С3 была намного ниже, чем входной цепи R2С2. Ведь когда проявляется влияние С3 из-за роста его сопротивления, то и напряжение на нем увеличивается (выходное напряжение усилителя перераспределяется между R4, R3 и С3 пропорционально их сопротивлениям). Если же на этих частотах выходное напряжение падает (из-за падения входного напряжения), то и напряжение на С3 не растет. В принципе, в качестве С3 можно использовать не полярный конденсатор, но я не могу однозначно сказать, улучшится от этого звук, или ухудшится: не полярный конденсатор это «два в одном» полярных, включенных встречно.

Конденсатор С4 шунтирует С3 на высоких частотах: у электролитов есть еще один недостаток (на самом деле недостатков много, это расплата за высокую удельную емкость) — они плохо работают на частотах выше 5-7 кГц (дорогие лучше, например Black Gate, ценой 7-12 евро за штуку неплохо работает и на 20 кГц). Пленочный конденсатор С4 «берет высокие частоты на себя», тем самым снижая искажения, вносимые на них конденсатором С3. Чем больше емкость С4 — тем лучше. А его максимальное рабочее напряжение может быть сравнительно небольшим.

Устойчивость усилителя

Цепь С7R9 увеличивает устойчивость усилителя. В принципе усилитель очень устойчив, и без нее можно обойтись, но мне попадались экземпляры микросхем, которые без этой цепи работали хуже. Конденсатор С7 должен быть рассчитан на напряжение не ниже, чем напряжение питания.

Схема усилителя звука на микросхеме , и в частности конденсаторы С8 и С9 осуществляют так называемую вольт-добавку. Через них часть выходного напряжения поступает обратно в пред оконечный каскад и складывается в напряжением питания. В результате напряжение питания внутри микросхемы оказывается выше, чем напряжение источника питания. Это нужно потому, что выходные транзисторы обеспечивают выходное напряжение вольт на 5 меньше, чем напряжение на их входах. Таким образом, чтобы получить на выходе 25 вольт, нужно подать на затворы транзисторов напряжение 30 вольт, а где его взять? Вот и берем его с выхода. Без цепи вольт-добавки выходное напряжение микросхемы было бы вольт на 10 меньше, чем напряжение питания, а с этой цепью всего на 2-4. Пленочный конденсатор С9 берет работу на себя на высоких частотах, где С8 работает хуже. Оба конденсатора должны выдерживать напряжение не ниже, чем 1,5 напряжения питания.

Управление режимами Mute и StdBy

Резисторы R5-R8, конденсаторы С5, С6 и диод D1 управляют режимами Mute и StdBy при включении и выключении питания (см. Режимы Mute и StandBy в микросхеме TDA7294/TDA7293). Они обеспечивают правильную последовательность включения/выключения этих режимов. Правда все отлично работает и при «неправильной» их последовательности, так что такое управление нужно больше для собственного удовольствия.

Конденсаторы С10-С13 фильтруют питание. Их использование обязательно — даже с самым наилучшим источником питания сопротивления и индуктивности соединительных проводов могут повлиять на работу усилителя. При наличии этих конденсаторов никакие провода не страшны (в разумных пределах)! Уменьшать емкости не стОит. Минимум 470 мкФ для электролитов и 1 мкФ для пленочных. При установке на плату необходимо, чтобы выводы были максимально короткими и хорошо пропаяны — не жалейте припоя. Все эти конденсаторы должны выдерживать напряжение не ниже, чем 1,5 напряжения питания.

Разделение входной и выходной земли

И, наконец, резистор R10. Он служит для разделения входной и выходной земли. «На пальцах» его назначение можно объяснить так. С выхода усилителя через нагрузку на землю протекает большой ток. Может так случиться, что этот ток, протекая по «земляному» проводнику, протечет и через тот участок, по которому течет входной ток (от источника сигнала, через вход усилителя, и далее обратно к источнику по «земле»). Если бы сопротивление проводников было нулевым, то и ничего страшного. Но сопротивление хоть и маленькое, но не нулевое, поэтому на сопротивлении «земляного» провода будет появляться напряжение (закон Ома: U=I*R), которое сложится со входным. Таким образом выходной сигнал усилителя попадет на вход, причем эта обратная связь ничего хорошего не принесет, только всякую гадость. Сопротивление резистора R10 хоть и мало (оптимальное значение 1…5 Ом), но намного больше, чем сопротивление земляного проводника, и через него (резистор) во входную цепь попадет в сотни раз меньший ток, чем без него.

В принципе, при хорошей разводке платы (а она у меня хорошая) этого не произойдет, но с другой стороны, что-то подобное может случиться в «макромасштабе» по цепи источник_сигнала-усилитель-нагрузка. Резистор поможет и в этом случае. Впрочем, его можно вполне заменить перемычкой — он использован исходя из принципа «лучше перебдеть, чем недобдеть».

Источник питания

Схема усилителя звука на микросхеме питается двухполярным напряжением (т.е. это два одинаковых источника, соединенных последовательно, а их общая точка подключена к земле).

Минимальное напряжение питания по даташиту +- 10 вольт. Я лично пробовал питать от +-14 вольт — микросхема работает, но стОит ли так делать? Ведь выходная мощность получается мизерной! Максимальное напряжение питания зависит от сопротивления нагрузки (это напряжение каждого плеча источника):

Эта зависимость вызвана допустимым нагревом микросхемы. Если микросхема установлена на маленьком радиаторе, напряжение питания лучше снизить. Максимальная выходная мощность, получаемая от усилителя приблизительно описывается формулой:

где единицы: В, Ом, Вт (я отдельно исследую этот вопрос и опишу), а Uип — напряжения одного плеча источника питания в режиме молчания.

Мощность блока питания

Мощность блока питания должна быть ватт на 20 больше, чем выходная мощность. Диоды выпрямителя рассчитаны на ток не менее 10 Ампер. Емкость конденсаторов фильтра не менее 10 000 мкФ на плечо (можно и меньше, но максимальная мощность снизится а искажения возрастут).

Нужно помнить, что напряжение выпрямителя на холостом ходу в 1,4 раза выше, чем напряжение на вторичной обмотке трансформатора, поэтому не спалите микросхему! Простая, но довольно точная программа для расчета блока питания:

Разводка печатной платы

Схема усилителя звука на микросхеме , плата которого разведена с учетом всех требований, предъявляемых к разводке высококачественных усилителей. Вход разведен максимально далеко от выхода, и заключен в «экран» из разделенной земли — входной и выходной. Дорожки питания, обеспечивают максимальную эффективность фильтрующих конденсаторов (при этом длинна выводов конденсаторов С10 и С12 должна быть минимальна). В своей экспериментальной плате я установил клеммники для подключения входа, выхода и питания — место под них предусмотрено (может несколько мешать конденсатор С10), но для стационарных конструкций лучше все эти провода припаять — так надежнее.

Широкие дорожки кроме низкого сопротивления обладают еще тем преимуществом, что труднее отслаиваются при перегреве. Да и при изготовлении «лазерно-утюжным» методом если где и не «пропечатается» квадрат 1 мм х 1 мм, то не страшно — все равно проводник не оборвется. Кроме того, широкий проводник лучше держит тяжелые детали (а тонкий может просто отклеиться от платы).

На плате всего одна перемычка. Она лежит под выводами микросхемы, поэтому ее нужно монтировать первой, а под выводами оставить достаточно места, чтобы не замкнуло.

Резисторы все, кроме R9 мощностью 0,12 Вт, Конденсаторы С9, С10, С12 К73-17 63В, С4 я использовал К10-47в 6,8 мкФ 25В (в кладовке завалялся… С такой емкостью даже без конденсатора С3 частота среза по цепи ООС получается 20 Гц — там, где не нужно глубоких басов, одного такого конденсатора вполне достаточно). Однако я рекомендую все конденсаторы использовать типа К73-17. Использование дорогих «аудиофильских» я считаю неоправданным экономически, а дешевые «керамические» дадут худший звук (это по идее, в принципе — пожалуйста, только помните, что некоторые из них выдерживают напряжение не более 16 вольт и в качестве С7 их использовать нельзя). Электролиты подойдут любые современные. Схема усилителя звука на микросхеме имеет на печатной плате нанесенные значки полярности подключения всех электролитических конденсаторов и диода. Диод — любой маломощный выпрямительный, выдерживающий обратное напряжение не менее 50 вольт, например 1N4001-1N4007. Высокочастотные диоды лучше не использовать.

В углах платы предусмотрено место для отверстий крепежных винтов М3 — можно крепить плату только за корпус микросхемы, но все же надежнее еще и прихватить винтами.

Теплоотвод для микросхемы

Микросхему обязательно установить на радиатор площадью не менее 350 см2. Лучше больше. В принципе в нее встроена тепловая защита, но судьбу лучше не искушать. Даже если предполагается активное охлаждение, все равно радиатор должен быть достаточно массивным: при импульсном тепловыделении, что характерно для музыки, тепло более эффективно отбирается теплоемкостью радиатора (т.е. большая холодная железка), нежели рассеиванием в окружающую среду.

Металлический корпус микросхемы соединен с «минусом» питания. Отсюда возникают два способа установки ее на радиатор:

Через изолирующую прокладку, при этом радиатор может быть электрически соединен с корпусом.
Напрямую, при этом радиатор обязательно электрически изолирован от корпуса.

Второй вариант (мой любимый) обеспечивает лучшее охлаждение, но требует аккуратности, например не демонтировать микросхему при включенном питании.

В обоих случаях нужно использовать теплопроводящую пасту, причем в 1-м варианте она должна быть нанесена и между корпусом микросхемы и прокладкой, и между прокладкой и радиатором.

Схема усилителя звука на микросхеме — налаживание

Общение в интернете показывает, что 90% всех проблем с аппаратурой составляет ее «не налаженность». То есть, спаяв очередную схему, и не сумев ее наладить, радиолюбитель ставит на ней крест, и во всеуслышание объявляет схему плохой. Поэтому наладка — самый важный (и зачастую самый сложный) этап создания электронного устройства.

Правильно собранный усилитель в налаживании не нуждается. Но, поскольку никто не гарантирует, что все детали абсолютно исправны, при первом включении нужно соблюдать осторожность.

Первое включение проводится без нагрузки и с отключенным источником входного сигнала (лучше вообще закоротить вход перемычкой). Хорошо бы в цепь питания (и в «плюс» и в «минус» между источником питания и самим усилителем) включить предохранители порядка 1А. Кратковременно (~0,5 сек.) подаем напряжение питания и убеждаемся, что ток, потребляемый от источника небольшой — предохранители не сгорают. Удобно, если в источнике есть светодиодные индикаторы — при отключении от сети, светодиоды продолжают гореть не менее 20 секунд: конденсаторы фильтра долго разряжаются маленьким током покоя микросхемы.

Ток покоя микросхемы

Если потребляемый микросхемой ток большой (больше 300 мА), то причин может быть много: КЗ в монтаже; плохой контакт в «земляном» проводе от источника; перепутаны «плюс» и «минус»; выводы микросхемы касаются перемычки; неисправна микросхема; неправильно впаяны конденсаторы С11, С13; неисправны конденсаторы С10-С13.

Убедившись, что схема усилителя звука на микросхеме держит нормальный ток покоя, смело включаем питание и измеряем постоянное напряжение на выходе. Его величина не должна превышать +-0,05 В. Большое напряжение говорит о проблемах с С3 (реже с С4), или с микросхемой. Бывали случаи, когда «межземельный» резистор либо был плохо пропаян, либо вместо 3 Ом имел сопротивление 3 кОм. При этом на выходе была постоянка 10…20 вольт. Подключив к выходу вольтметр переменного тока, убеждаемся, что переменное напряжение на выходе равно нулю (это лучше всего делать с замкнутым входом, или просто с не подключенным входным кабелем, иначе на выходе будут помехи). Наличие на выходе переменного напряжения говорит о проблемах с микросхемой, или цепями С7R9, С3R3R4, R10. К сожалению, зачастую обычные тестеры не могут измерить высокочастотное напряжение, которое появляется при самовозбуждении (до 100 кГц), поэтому лучше всего здесь использовать осциллограф.

Если и тут все в порядке, подключаем нагрузку, еще раз проверяем на отсутствие возбуждения уже с нагрузкой, и все — можно слушать!

Дополнительное тестирование

Но лучше все же провести еще один тест. Дело в том, что самым, на мой взгляд, мерзким видом возбуждения усилителя, является «звон» — когда возбуждение появляется только при наличии сигнала, причем при его определенной амплитуде. Потому что его трудно обнаружить без осциллографа и звукового генератора (да и устранить непросто), а звук портится колоссально из-за огромных интер-модуляционных искажений. Причем на слух это обычно воспринимается как «тяжелый» звук, т.е. без всяких дополнительных призвуков (т.к. частота очень высокая), поэтому слушатель и не знает, что у него усилитель возбуждается. Просто послушает, и решит, что микросхема «плохая», и «не звучит».

Еслиcхема усилителя звука на микросхеме правильно собрана и нормальный источник питания такого быть не должно.

Однако иногда бывает, и цепь С7R9 как раз и борется с такими вещами. НО! В нормальной микросхеме все ОК и при отсутствии С7R9. Мне попадались экземпляры микросхемы со звоном, в них проблема решалась введением цепи С7R9 (поэтому я ее и использую, хоть в даташите ее и нет). Если подобная гадость имеет место даже при наличии С7R9, то можно попробовать ее устранить, «поигравшись» с сопротивлением (его можно уменьшить до 3 Ом), но я бы не советовал использовать такую микросхему — это какой-то брак, и кто его знает, что в ней еще вылезет.

Проблема в том, что «звон» можно увидеть только на осциллографе, это когда схема усилителя звука на микросхеме получает сигнал со звукового генератора (на реальной музыке его можно и не заметить) — а это оборудование есть далеко не у всех радиолюбителей. (Хотя, если хотите эти делом хорошо заниматься, постарайтесь такие приборы заметь, хотя бы где-то ими пользоваться). Но если желаете качественного звука — постарайтесь провериться на приборах — «звон» — коварнейшая вещь, и способен повредить качеству звучания тысячей способов. Мои платы:


«Настольная» проверка усилителя

Схема усилителя звука на микросхеме после предварительного включение на столе, показала, что схема и печатная плата абсолютно рабочие! Дополнительных настроек после сборки по схеме не производились! очень доволен, рекомендую!

Предварительное включение усилителя на столе, показала, что схема и печатная плата абсолютно рабочие! Дополнительных настроек после сборки по схеме не производились! очень доволен, рекомендую!

В этой статье я расскажу Вам о такой микросхеме, как TDA1514A

Вступление

Начну немного с печального... В данный момент производство микросхемы прекращено... Но это не значит, что она сейчас "на вес золота", нет. Практически в любом радиомагазине или на радиорынке ее можно достать по цене 100 - 500 рублей. Согласитесь, немного дороговато, но цена абсолютно справедливая! Кстати, на мировых интернет-площадках, таких как и они стоят намного дешевле...

Микросхема отличается низким уровнем искажений и широким диапазоном воспроизводимых частот, поэтому лучше использовать на широкополосных динамиках. Люди, собиравшие усилители на данной микросхеме хвалят ее за высокое качество звучания. Это одна из немногих микросхем, действительно "качественно звучащая". По качеству звука ни чуть не уступает популярным ныне TDA7293/94. Однако, если в сборке допущены ошибки - качественная работа не гарантируется.

Краткое описание и достоинства

Данная микросхема представляет собой одноканальный Hi-Fi - усилитель класса AB, мощность которого составляет 50Вт. В микросхему встроена защита SOAR, термозащита (защита от перегрева) и режим "Mute"

К достоинствам можно отнести отсутствие щелчков при включении и выключении, наличие защит, малые гармонические и интермодуляционные искажения, низкое тепловое сопротивление и другое. Из недостатков выделить практически нечего, кроме как выход из строя при "бегающем" напряжении (питание должно быть более-менее стабильным) и относительно высокая цена

Коротко о внешнем виде

Микросхема выпускается в корпусе SIP с 9 длинными ножками. Шаг ножек составляет 2.54мм. На лицевой стороне надписи и логотип, а на задней теплоотвод - он соединен с с 4 ножкой, а 4 ножка это "-" питания. По бокам 2 проушины для крепления радиатора.

Оригинал или подделка?

Этим вопросом задаются многие, я постараюсь Вам ответить.

Итак. Микросхема должна быть аккуратно выполнена, ножки должны быть гладкими, незначительная деформация допускается, так как неизвестно как обращались с ними на складе или в магазине

Надпись... Она может быть выполнена как белой краской, так и обычным лазером, две микросхемы выше для сравнения (обе оригинальные). В том случае, если надпись нанесена краской, на микросхеме должна ВСЕГДА быть вертикальная полоса, разделенная проушиной. Пусть Вас не смущает надпись "TAIWAN" - ничего страшного, качество звучания у таких экземпляров ни чуть не хуже экземпляров без этой надписи. Кстати, практически половина радиодеталей делается в Тайване и в странах по соседству. Эта надпись находится не на всех микросхемах.

Еще советую обратить внимание на вторую строчку. Если она содержит только цифры (их должно быть 5) - это микросхемы "старого" производства. Надпись на них более широкая, также теплоотвод может иметь другую форму. Если надпись на микросхеме нанесена лазером и вторая строчка содержит только 5 цифр - на микросхеме должна присутствовать вертикальная полоса

Логотип на микросхеме должен присутствовать обязательно и причем только "PHILIPS"! Насколько мне известно, выпуск прекратился задолго до основания NXP, а это 2006 год. Если вы встретили данную микросхему с логотипом NXP, тут одно из двух - микросхему снова начали выпускать или же типичный "левачок"

Также необходимо присутствие впадин в форме кругов, как на фото. Если их нет - подделка.

Возможно есть еще способы выявить "левачок", но не стоит так напрягаться над этим вопросом. Случаев брака - всего единицы.

Технические характеристики микросхемы

* Входное сопротивление и коэффициент усиления подстраивается внешними элементами

Ниже таблица примерных выходных мощностей в зависимости от питания и сопротивления нагрузки

Напряжение питания Сопротивление нагрузки
4 ом 8 ом
10Вт 6Вт
+-16.5В

28Вт

12Вт
48Вт 28Вт
58Вт 32Вт
69Вт 40Вт

Принципиальная схема

Схема взята из даташита (май 1992)

Слишком она громоздкая... Пришлось перерисовать:

Схема немного отличается от предоставленной производителем, все характеристики, приведенные выше - они именно под ЭТУ схему. Отличий несколько и все они направлены на улучшение звука - в первую очередь установлены фильтрующие емкости, убрана "вольтдобавка" (о ней чуть позже) и изменен номинал резистора R6.

Теперь более подробно о каждом компоненте. C1 - входной разделительный конденсатор. Пропускает через себя только переменное напряжение сигнала. Также влияет на частотную характеристику - чем меньше емкость, тем меньше НЧ и соответственно чем больше емкость - тем и НЧ больше. Больше 4.7мкФ ставить не советовал бы, так как производитель предусмотрел всё - при емкости этого конденсатора равной 1мкФ усилитель воспроизводит заявленные частоты. Конденсатор использовать пленочный, в крайнем случае электролитический (неполярный желательно), но никак не керамический! R1 уменьшает входное сопротивление, а вместе с C2 образует фильтр от входных помех.

Как и в любом операционном усилителе здесь можно задать коэффициент усиления. Это делается при помощи R2 и R7. При этих номиналах КУ равен 30дБ (может незначительно отклоняться). С4 влияет на включение защиты SOAR и Mute, R5 влияет на плавную зарядку и разрядку конденсатора, в связи с чем при включении и выключении усилителя отсутствуют щелчки. С5 и R6 образуют так называемую цепь Цобеля. Ее задача - препятствование самовозбуждению усилителя, а также выполнение стабилизации частотной характеристики. C6-C10 подавляют пульсации по питанию, защищают от просадки напряжения.
Резисторы в данной схеме можно брать с любой мощностью, я например использую стандартные 0.25Вт. Конденсаторы на напряжение не менее 35В, кроме С10 - я использую у себя в схеме на 100В, хотя и 63В должно хватить. Все компоненты перед пайкой должны быть проверены на исправность!

Схема усилителя с "вольтдобавкой"

Данный вариант схемы взят из даташита. Отличается от вышеописанной схемы присутствием элементов С3, R3 и R4.
Такой вариант позволит получить до 4Вт больше, чем заявлено (при ±23В). Но при таком включении могут незначительно повысится искажения. Резисторы R3 и R4 применять на 0.25Вт. У меня на 0.125Вт не выдерживали. Конденсатор C3 - 35В и выше.

В данной схеме необходимо использование двух микросхем. Одна дает на выходе положительный сигнал, другая - отрицательный. При таком включении можно снять более 100Вт на 8 Ом.

По словам собравших, данная схема абсолютно работоспособна и у меня даже есть более подробная табличка примерных выходных мощностей. Она ниже:

А если поэксперементировать, например при ±23В подключить нагрузку 4 ом, то можно получить до 200Вт! При условии что радиаторы не будут сильно греться, 150Вт в мост микросхемы потянут легко.

Такую конструкцию неплохо использовать в сабвуферах.

Работа в внешними выходными транзисторами

Микросхема является по сути дела мощным операционным усилителем и его можно умощнить еще, повесив на выход пару из комплиментарных транзисторов. Данный вариант пока не проверялся, но теоретически он возможен. Также можно умощнить и мостовую схему усилителя, повесив на выход каждой микросхеме по паре комплиментарных транзисторов

Работа при однополярном питании

В самом начале даташита я нашел строки, в которых написано, что микросхема работает и при однополярном питании. А где же схема тогда? Увы, в даташите нету, в интернете не нашел... Не знаю, может где-то и существует такая схема, но я такую не видел... Единственное что могу посоветовать - TDA1512 или TDA1520. Звучание отличное, но питаются от однополярного питания, да и выходной конденсатор может слегка подпортить картину. Найти их довольно проблематично, выпускались очень давно и были давно сняты с производства. Надписи на них могут быть различной формы, проверять на "фальшивку" их не стоит - случаев отказа не было.

Обе микросхемы представляют собой Hi-Fi - усилители класса АВ. Мощность около 20Вт при +33В на нагрузку 4 ом. Схемы приводить не буду (тема же все-таки про TDA1514A). Скачать печатные платы для них можно в конце статьи.

Питание

Для стабильной работы микросхемы нужен источник питания с напряжением от ±8 до ±30В с током не менее 1.5А. Питание должно подаваться толстыми проводами, входные провода максимально дальше удалить от выходных проводов и источника питания
Питать можно обычным простым блоком питания, в который входят сетевой трансформатор, диодный мост, фильтрующие емкости и по желанию дроссели. Для получения ±24В необходим трансформатор с двумя вторичными обмотками по 18В с током более 1.5А для одной микросхемы.

Можно использовать импульсные блоки питания, например самый простенький, на IR2153. Вот его схема:

Этот ИБП выполнен по полумостовой схеме, частота 47кГц (устанавливается при помощи R4 и C4). Диоды VD3-VD6 ультрабыстрые или Шоттки

Возможно применение данного усилителя в машине, с использованием повышающего преобразователя. На той же IR2153, вот схема:

Преобразователь выполнен по схеме Push-Pull. Частота 47кГц. Диоды выпрямительные нужны ультрабыстрые или Шоттки. Расчет трансформатора также можно выполнить в ExcellentIT. Дроссели в обоих схемах "посоветует" сама ExcellentIT, Считать их нужно в программе Drossel. Автор программы тот же -

Хочу сказать пару слов о IR2153 - блоки питания и преобразователи получаются довольно неплохие, но в микросхеме не предусмотрена стабилизация выходного напряжения и поэтому оно будет меняться в зависимости от напряжения питания, да и просаживаться будет.

Не обязательно использовать IR2153 и вообще импульсные блоки питания. Можно обойтись проще - как в "старину", обычный трансформатор с диодным мостом и огромными емкостями по питанию. Вот так выглядит его схема:

C1 и С4 не менее 4700мкФ, на напряжение не менее 35В. С2 и С3 - керамика или пленка.

Печатные платы

Сейчас у меня имеется такая коллекция плат:
а) основная - ее можно увидеть на фото снизу.
б) слегка измененная первая (основная). Увеличены в ширине все дорожки, силовые намного шире, элементы слегка передвинуты.
в) мостовая схема. Плата отрисована не совсем удачно, но работоспособна
г) первый вариант ПП - первый пробный вариант, не хватает цепи Цобеля, а так собирал, работает. Есть даже фото (снизу)
д) печатная плата от XandR_man - нашел на форуме сайта "Паяльник". Что сказать... Строго схема из даташита. Более того, я своими глазами видел наборы на основе этой печатки!
Кроме того, Вы можете самостоятельно нарисовать плату, если не устраивают предоставленные.

Пайка

После того, как Вы изготовили плату и проверили все детали на исправность, можно приступать к пайке.
Залудите всю плату, а силовые дорожки лудить как можно более толстым слоем припоя
Первыми впаиваются все перемычки (их толщина должна быть как можно больше в силовых участках), а далее все компоненты по увеличению размера. последней впаивается микросхема. Советую не резать ножки, а впаивать такой, какая она есть. Можно потом согнуть ее для удобства посадки на радиатор.

Микросхема защищена от статического электричества, так что можно паять включенным паяльником, сидя даже в шерстяной одежде.

Однако, необходимо паять так, чтобы микросхема не перегревалась. Для надежности можно во время пайки прицепить за одну проушину к радиатору. Можно за две, разницы тут не будет, лишь бы кристалл внутри не перегрелся.

Настройка и первый запуск

После того, как все элементы и провода впаяны, необходим "тестовый запуск". Прикрутите микросхему на радиатор, замкните входной провод с землей. В качестве нагрузки Вы можете подключать будущие колонки, а вообще, чтобы они не "вылетели" за доли секунд при браке или ошибках в монтаже используют мощный резистор в качестве нагрузки. Если же он вылетает, знайте - Вы допустили ошибку, либо вам попался брак (микросхема имеется ввиду). К счастью, такие случаи почти не происходят, в отличие от TDA7293 и прочих, которых в магазине можно набрать кучу из одной партии и как потом выяснится - все они брак.

Однако, хочу сделать небольшое замечание. Делайте Ваши провода как можно короче. Было такое, что я всего лишь удлинил выходные провода и стал слышать в динамиках гул, похожий на "постоянку". Более того, при включении усилителя из-за "постоянки" динамик выдавал гул, который пропадал через 1-2 секунды. Сейчас у меня из платы выходят провода, максимум 25 см и идут сразу к динамику - усилитель включается бесшумно и работает без проблем! На входные провода тоже обратите внимание - ставьте экранированный провод, длинным его тоже не не стоит делать. Соблюдайте простые требования и у Вас все получится!

Если ничего не произошло с резистором, отключите питание, прикрепите входные провода к источнику сигнала, подключите Ваши колонки и подавайте питание. В динамиках можно услышать небольшой фон - это говорит о том, усилитель работает! Подайте сигнал и наслаждайтесь звучанием (в том случае если все отлично собрано). Если "хрюкает", "пердит" - посмотрите на питание, на правильность сборки, ибо как выявлено в практике - уж таких "гадких" экземпляров нету, которые при правильной сборке и отличном питании криво работали...

Как выглядит готовый усилитель

Вот серия фотографий, сделанных в декабре 2012. Платы как раз после пайки. Тогда я собирал, чтобы убедиться в работоспособности микросхем.




А вот мой первый усилитель, до сегодняшних дней дожила только плата, все детали ушли на другие схемы, а сама микросхема вышла из строя из-за попадания на него переменного напряжения


Ниже свежие фотографии:



К сожалению, мой ИБП на стадии изготовления, а запитывал я микросхему раньше от двух одинаковых аккумуляторов и небольшого трансформатора с диодным мостом и небольшими емкостями по питанию, в итоге было ±25В. Две таких микросхемы с четырьмя колонками от музыкального центра "Sharp" так играли, что даже предметы на столах "танцевали под музыку", окна звенели, да и телом чувствовалась мощность неплохо. Снять этого сейчас не могу, но есть источник питания ±16В, от него до 20Вт на 4 ома можно получить... Вот видео Вам в качестве доказательства, что усилитель абсолютно рабочий!

Благодарности

Огромную благодарность выражаю пользователям форума сайта "Паяльник", а конкретно огромное спасибо пользователю за некоторую помощь, благодарю также , и многих другим (извините что Вас не назвал по никам) за честные отзывы, которые подтолкнули меня на сборку данного усилителя. Без всех Вас данная статья могла быть и не написана.

Завершение

Микросхема обладает рядом достоинств, прекрасным звучанием в первую очередь. Многие микросхемы такого класса могут даже уступать по качеству звучания, но это в зависимости от качественной сборки. Плохая сборка - плохое звучание. Подходите к сборке электронных схем серьезно. Крайне не рекомендую паять данный усилитель навесным монтажем - это может только ухудшить звучание, либо привести к самовозбуждению, а в последствии полного выхода из строя.

Я собрал практически всю информацию, которую проверял сам и мог спросить у других людей,которые собирали данный усилитель. Жаль, что у меня не имеется осциллографа - без него мои высказывания о качестве звука ничего не значат... Но я буду и дальше утверждать, что звучит она просто прекрасно! Собиравшие данный усилитель меня поймут!

Если остались вопросы, пишите мне на форум сайта "Паяльник". по обсуждению усилителей на данной микросхеме, можете спрашивать там.

Надеюсь статья оказалась полезной для Вас. Удачи Вам! С уважением, Юрий.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Микросхема TDA1514A 1 В блокнот
С1 Конденсатор 1 мкФ 1 В блокнот
С2 Конденсатор 220 пФ 1 В блокнот
С4 3.3мкФ 1 В блокнот
С5 Конденсатор 22 нФ 1 В блокнот
С6, С8 Электролитический конденсатор 1000мкФ 2 В блокнот
С7, С9 Конденсатор 470 нФ 2 В блокнот
С10 Электролитический конденсатор 100мкФ 1 100В В блокнот
R1 Резистор

20 кОм

1 В блокнот
R2 Резистор

680 Ом

1 В блокнот
R5 Резистор

470 кОм

1 В блокнот
R6 Резистор

10 Ом

1 Подбирается при настройке В блокнот
R7 Резистор

22 кОм

1 В блокнот
Схема с вольтдобавкой
Микросхема TDA1514A 1 В блокнот
С1 Конденсатор 1 мкФ 1 В блокнот
С2 Конденсатор 220 пФ 1 В блокнот
С3 Электролитический конденсатор 220мкФ 1 От 35В и выше В блокнот
С4 Электролитический конденсатор 3.3мкФ 1 В блокнот
С5 Конденсатор 22 нФ 1 В блокнот
С6, С8 Электролитический конденсатор 1000мкФ 2 В блокнот
С7, С9 Конденсатор 470 нФ 2 В блокнот
С10 Электролитический конденсатор 100мкФ 1 100В В блокнот
R1 Резистор

20 кОм

1 В блокнот
R2 Резистор

680 Ом

1 В блокнот
R3 Резистор

47 Ом

1 Подбирается при настройке В блокнот
R4 Резистор

82 Ом

1 Подбирается при настройке В блокнот
R5 Резистор

470 кОм

1 В блокнот
R6 Резистор

10 Ом

1 Подбирается при настройке В блокнот
R7 Резистор

22 кОм

1 В блокнот
Мостовое включение
Микросхема TDA1514A 2 В блокнот
С1 Конденсатор 1 мкФ 1 В блокнот
С2 Конденсатор 220 пФ 1 В блокнот
С4 Электролитический конденсатор 3.3мкФ 1 В блокнот
С5, С14, С16 Конденсатор 22 нФ 3 В блокнот
С6, С8 Электролитический конденсатор 1000мкФ 2 В блокнот
С7, С9 Конденсатор 470 нФ 2 В блокнот
С13, С15 Электролитический конденсатор 3.3мкФ 2 В блокнот
R1, R7 Резистор

20 кОм

2 В блокнот
R2, R8 Резистор

680 Ом

2 В блокнот
R5, R9 Резистор

470 кОм

2 В блокнот
R6, R10 Резистор

10 Ом

2 Подбирается при настрйоке В блокнот
R11 Резистор

1.3 кОм

1 В блокнот
R12, R13 Резистор

22 кОм

2 В блокнот
Импульсный блок питания
IC1 Драйвер питания и MOSFET

IR2153

1 В блокнот
VT1, VT2 MOSFET-транзистор

IRF740

2 В блокнот
VD1, VD2 Выпрямительный диод

SF18

2 В блокнот
VD3-VD6 Диод Любые Шоттки 4 Ультрабыстрые диоды или Шоттки В блокнот
VDS1 Диодный мост 1 Диодный мост на необходимый ток В блокнот
С1, С2 Электролитический конденсатор 680мкФ 2 200В В блокнот
С3 Конденсатор 10 нФ 1 400В В блокнот
С4 Конденсатор 1000 пФ 1 В блокнот
С5 Электролитический конденсатор 100мкФ 1 В блокнот
С6 Конденсатор 470 нФ 1 В блокнот
С7 Конденсатор 1 нФ 1