Важнейшим свойством системы является свойство. Свойства и структуры систем. Понятие системы, свойства систем

АВТОМАТИЗИРОВАННЫЕ ЭКОНОМИЧЕСКИЕ ИНФОРМАЦИОННЫЕ СИСТЕМЫ.

В современной научно-технической литературе дается множество определений понятию «система». Наиболее полное определение звучит следующим образом:

Система совокупность элементов, связанных между собой и с внешней средой упорядоченным образом, выбранных с определенной целью и выполняющих заданную функцию, направленную на получение конкретного полезного результата. Это определение требует дополнительного пояснения:

совокупность элементов … - понимается в прямом смысле, т.е. различные элементы сведены вместе, чтобы сформировать систему;

связанных между собой … - предполагает, что элементы имеют некоторое влияние друг на друга, проистекающее из принадлежности к системе;

с внешней средой … - предполагается наличие границ в системе, устанавливающих деление на внешнюю и внутреннюю среду;

упорядоченным образом … - подразумевает, что взаимодействия между элементами не случайные, а подчиняются некоторым правилам, которые можно познать;

выбранных с определенной целью … - сосредотачивает внимание на роли наблюдателя, который определил систему, установив границу так, что какие-то элементы входят в систему, а какие-то относятся к внешней среде, при этом границы устанавливаются на основе какой-то идеи;

выполняющих заданную функцию … - системы не существуют просто так, они обычно имеют свое предназначение (функции);

направленную на получение конкретного полезного результата … - любая система любого масштаба функционирует с целью получения заданного результата.

В соответствии с этим определением практически каждый экономический объект можно рассматривать как систему, стремящуюся в своем функционировании к достижению определенной цели. В качестве примера можно назвать систему образования, энергетическую, транспортную, производственную систему и т.д.

Для системы характерны следующие основные свойства :

· сложность;

· делимость;

· целостность;

· многообразие элементов;

· структурированность.

Сложность системы зависит от множества входящих в нее компонентов, их взаимодействия, а также от сложности внешних и внутренних связей.

Делимость системы означает, что в зависимости от точки зрения на нее она может быть разделена на подсистемы, каждая из которых выполняет свою функцию.

Целостность системы означает, что множество подсистем функционирует с единой общей целью.

Многообразие элементов означает, что в систему могут быть объединены элементы различной природы. Например, производственная система может состоять из таких элементов, как сырье, готовая продукция, средства производства, финансовые, трудовые ресурсы и т.д.


Структурированность системы означает наличие определенных связей между элементами, распределение элементов по уровням иерархии.

Для того чтобы система выполняла заданную функцию и при этом достигала требуемого результата, необходимо ею управлять. Для управления сложными системами существуют системы управления. Важнейшими функциями этих систем являются:

· прогнозирование;

· планирование;

· анализ;

· контроль;

· регулирование.

Рисунок. – Схема системы управления с обратной связью.

Управление связано с обменом информацией между компонентами системы, а также системы с внешней средой. В процессе управления получают сведения о состоянии системы в каждый момент времени, о достижении (или не достижении) заданной цели с тем, чтобы воздействовать на систему и обеспечить выполнение управленческих решений.

Таким образом, любой системе управления экономическим объектом соответствует своя информационная система, называемая экономической информационной системой .

Экономический объект– это объект управления, представляющий собой совокупность взаимодействующих, относительно автономных систем, выполняющих множество преобразований экономической информации.

Экономическая информация – совокупность сведений экономического характера, которые можно подвергать обработке в процессах планирования, учета, анализа, контроля на всех уровнях управления экономическим объектом.

Экономическая информация обладает рядом особенностей по сравнению с общей массой информации:

1. в основной своей массе она имеет дискретную форму представления; выражается в цифровом или алфавитно-цифровом виде;

2. отражается на материальных носителях (документах, магнитных лентах и дисках);

3. ее большие объемы обрабатываются в установленных временных пределах, зависящих от конкретных функций, чаще всего циклическая регулярная обработка;

4. исходная информация, возникающая в одном месте, находит свое отражение в различных функциях управления и в связи с этим подвергается различной обработке несколько раз, что требует многократной перегруппировки данных;

5. объемы исходной информации достигают больших размеров при относительно малом числе операций ее обработки;

6. исходные данные и результаты расчета, а иногда и промежуточные результаты подлежат длительному хранению.

Исходя из особенностей экономической информации она характеризуется следующими свойствами:

· достоверность,

· полнота,

· ценность,

· актуальность,

· однозначность.

Таким образом, можно дать следующее определение экономической информационной системы.

ЭИС совокупность внутренних и внешних информационных потоков экономического объекта, методов, средств, специалистов, участвующих в процессах обработки экономической информации и принятия управленческих решений.

Информационная система является системой информационного обслуживания работников управленческих служб и выполняет технологические функции по накоплению, хранению, передаче и обработке информации. Она формируется в соответствии с регламентом, принятым на конкретном экономическом объекте, оказывает помощь в реализации целей и задач, стоящих перед ним.

Для повышения эффективности систем управления экономическими объектами используются новейшие технические, технологические и программные средства. Следует заметить, что ЭИС можно реализовать и без использования вышеупомянутых средств, но отдача от такой системы будет значительно ниже. Если же применять такие средства, то следует говорить об автоматизированной экономической информационной системе (АЭИС).

АЭИС – совокупность информации, экономико-математических методов и моделей, технических, технологических и программных средств и специалистов, предназначенная для обработки экономической информации и принятия управленческих решений.

Создание АЭИС способствует повышению эффективности экономического объекта и обеспечивает повышение качества управления.

Итак, состоянием системы называется совокупность существенных свойств, которыми система обладает в каждый момент времени.

Под свойством понимают сторону объекта, обуславливающую его отличие от других объектов или сходство с ними и проявляющуюся при взаимодействии с другими объектами.

Характеристика – то, что отражает некоторое свойство системы.

Какие свойства систем известны.

Из определения «системы» следует, что главным свойством системы является целостность, единство, достигаемое посредством определенных взаимосвязей и взаимодействий элементов системы и проявляющиеся в возникновении новых свойств, которыми элементы системы не обладают. Это свойство эмерджентности (от анг.emerge – возникать, появляться).

  • 1. Эмерджентность – степень несводимости свойств системы к свойствам элементов, из которых она состоит.
  • 2. Эмерджентность – свойство систем, обусловливающее появление новых свойств и качеств, не присущих элементам, входящих в состав системы.

Эмерджентность – принцип противоположный редукционизму, который утверждает, что целое можно изучать, расчленив его на части и затем, определяя их свойства, определить свойства целого.

Свойству эмерджентности близко свойство целостности системы. Однако их нельзя отождествлять.

Целостность системы означает, что каждый элемент системы вносит вклад в реализацию целевой функции системы.

Целостность и эмерджентность – интегративные свойства системы.

Наличие интегративных свойств является одной из важнейших черт системы. Целостность проявляется в том, что система обладает собственной закономерностью функциональности, собственной целью.

Организованность – сложное свойство систем, заключающиеся в наличие структуры и функционирования (поведения). Непременной принадлежностью систем является их компоненты, именно те структурные образования, из которых состоит целое и без чего оно не возможно.

Функциональность - это проявление определенных свойств (функций) при взаимодействии с внешней средой. Здесь же определяется цель (назначение системы) как желаемый конечный результат.

Структурность - это упорядоченность системы, определенный набор и расположение элементов со связями между ними. Между функцией и структурой системы существует взаимосвязь, как между философскими категориями содержанием и формой. Изменение содержания (функций) влечет за собой из­менение формы (структуры),но и наоборот .

Важным свойством системы является наличие поведения – действия, изменений, функционирования и т.д.

Считается, что это поведение системы связано со средой (окружающей), т.е. с другими системами с которыми она входит в контакт или вступает в определённые взаимоотношения.

Процесс целенаправленного изменения во времени состояния системы называется поведением . В отличие от управления, когда изменение состояния системы достигается за счет внешних воздействий, поведение реализуется исключительно самой системой, исходя из собственных целей.

Поведение каждой системы объясняется структурой систем низшего порядка, из которых состоит данная система, и наличием признаков равновесия (гомеостаза ). В соответствии с признаком равновесия система имеет определенное состояние (состояния), которое являются для нее предпочтительным. Поэтому поведение систем описывается в терминах восстановления этих состояний, когда они нарушаются в результате изменения окружающей среды.

Ещё одним свойством является свойство роста (развития). Развитие можно рассматривать как составляющую часть поведения (при этом важнейшим).

Одним из первичных, а, следовательно, основопола­гающих атрибутов системного подхода является недопустимость рассмотрения объекта вне его развития , под которым понимается необратимое, направленное, закономерное изменение материи и сознания. В результате возникает новое качество или состояние объекта. Отождествление (может быть и не совсем строгое) терминов «развитие» и «движение» позволяет выразиться в таком смысле, что вне развития немыслимо существование материи, в данном случае - системы. Наивно представлять себе разви­тие, происходящее стихийно. В неоглядном множестве процессов, кажущихся на первый взгляд чем-то вроде броуновского (случайного, хаотичного) движения, при пристальном внимании и изучении вначале как бы проявляются контуры тенденций, а затем и довольно устойчивые закономер­ности. Эти закономерности по природе своей действуют объектив­но, т.е. не зависят от того, желаем ли мы их проявления или нет. Незнание законов и закономерностей развития - это блуждание в потемках.

«Кто не знает, в какую гавань он плывет,
для того нет попутного ветра»

Сенека

Поведение системы определяется характером реакции на внешние воздействия.

Фундаментальным свойством систем является устойчивость , т.е. способность системы противостоять внешним возмущающим воздействиям. От неё зависит продолжительность жизни системы.

Простые системы имеют пассивные формы устойчивости: прочность, сбалансированность, регулируемость, гомеостаз. А для сложных определяющими являются активные формы: надёжность, живучесть и адаптируемость.

Если перечисленные формы устойчивости простых систем (кроме прочности) касается их поведения, то определяющая форма устойчивости сложных систем носят в основном структурный характер.

Надёжность – свойство сохранения структуры систем, несмотря на гибель отдельных её элементов с помощью их замены или дублирования, а живучесть – как активное подавление вредных качеств. Таким образом, надёжность является более пассивной формой, чем живучесть.

Адаптируемость – свойство изменять поведение или структуру с целью сохранения, улучшения или приобретение новых качеств в условиях изменения внешней среды. Обязательным условием возможности адаптации является наличие обратных связей.

Всякая реальная система существует в среде. Связь между ними бывает настолько тесной, что определять границу между ними становится сложно. Поэтому выделение системы из среды связано с той или иной степенью идеализации.

Можно выделить два аспекта взаимодействия:

  • - во многих случаях принимает характер обмена между системой и средой (веществом, энергией, информацией);
  • - среда обычно является источником неопределённости для систем.

Воздействие среды может быть пассивным либо активным (антогонистическим, целенаправленно противодействующее системе).

Поэтому в общем случае среду следует рассматривать не только безразличную, но и антогонистическую по отношению к исследуемой системе.

В переводе с греческого слово «система» означает «соединение, целое, составленное из частей». Эти части, или элементы, находятся в единстве, в рамках которого они определенным образом упорядочены, взаимосвязаны, оказывают друг на друга то или иное воздействие.

Управление также обладает свойством системности, поэтому изучение его механизма мы начинаем со знакомства с основными положениями теории систем. В соответствии с ней любая система обладает рядом основных признаков.

Во-первых, как уже говорилось, она представляет собой набор элементов, или отдельных частей, выделенных по тому или иному принципу, являющихся ее структурообразующими факторами и играющих роль подсистем. Последние, хотя и относительно самостоятельны, но различным образом взаимодействуют в рамках системы; в простейшей форме тем, что находятся рядом и граничат друг с другом; более сложными формами взаимодействия является обусловленность (порождение одним элементом другого) и взаимное влияние, оказываемое ими друг на друга. Для сохранения системы такое взаимодействие должно быть гармоничным.

В результате взаимодействия у элементов и формируются общесистемные качества, то есть признаки, свойственные системе в целом и каждому из них в отдельности (например, человеческое тело в целом и каждый его орган осуществляют обменные процессы, имеют нервные клетки, постоянно обновляются и пр.

Свойства элементов (подсистем) определяют место последних во внутренней организации системы и реализуются в их функциях. Это проявляется в определенном влиянии на другие элементы, или объекты, находящиеся вне системы и способные это влияние воспринимать, преобразовывать и изменяться в соответствии с ним.

Во-вторых, система имеет границы, отделяющие ее от окружающей среды. Эти границы могут быть «прозрачными», допускающими проникновение в систему внешних влияний, и «непрозрачными», наглухо отделяющими ее от всего остального мира. Системы, осуществляющие свободный двусторонний обмен энергией, веществом, информацией со средой, получили название открытых; в противном случае говорится о закрытых системах, функционирующих относительно не зависимо от среды.

Если в систему вообще не поступают ресурсы извне, она имеет тенденцию к затуханию (энтропии) и прекращает свое существование (например, часы, если их не завести, останавливаются).

Открытые системы, самостоятельно черпающие необходимые для себя ресурсы из внешней среды, и преобразующие их для удовлетворения своих потребностей, в принципе неиссякаемы. В то же время, недостаточно, или наоборот, чрезмерно активный обмен со средой может систему разрушить (по причине нехватки ресурсов или неспособности их ассимилировать ввиду избыточного количества и разнообразия). Поэтому система должна находиться в состоянии внутреннего равновесия и баланса со средой. Это обеспечивает ее оптимальное приспособление к ней и успешное развитие.

Открытые системы стремятся к постоянным изменениям за счет специализации, дифференциации, интеграции элементов. Это ведет к усложнению связей, совершенствованию самой системы, позволяет достигать целей многими способами (для закрытых возможен только один), но требует дополнительных ресурсов.

В третьих, каждая система имеет определенную структуру, то есть упорядоченную совокупность взаимосвязанных элементов (иногда в обиходе понятие структура используется как синоним понятию организация).

Упорядоченность придает системе внутреннюю организацию, в рамках которой взаимодействие элементов подчиняется определенным принципам, законам. Системы, где такая организация минимальна, называются неупорядоченными, например, толпа на улице. Структура может в той или иной степени зависеть от особенностей самих элементов (например, взаимоотношения в чисто женском, мужском, детском или смешенном коллективах неодинаковы).

В-четвертых, в каждой системе есть некое явное системообразующее отношение или качество, которое в той или иной степени проявляется во всех остальных, обеспечивает их единство и целостность. Если оно определяется природой системы, то называется внутренними, в противном случае - внешним. В то же время, внутренние отношения могут распространяться и на другие системы (например, через подражание, заимствование опыта). Возможность реализации отношений и свойств системы исключительно на данной основе (субстрате) делает ее уникальной. В социальных системах кроме явного системообразующего отношения могут существовать неявные.

В-пятых, каждая система обладает определенными качествами. Многокачественность системы является следствием бесконечности связей и отношений, существующих на различных ее уровнях. Качества проявляются в отношении к другим объектам, причем, неодинаково. Например, один и тот же человек в роли руководителя может кричать на подчиненных и лебезить перед своим непосредственным начальником. Качества системы в определенной степени воздействуют на качество вошедших в них элементов, преобразуют их. Способность достигать этого характеризует силу системы.

В-шестых, системе присуща эмерджентность, то есть появление качественно новых свойств, отсутствующих у ее элементов, или не характерных для них. Таким образом, свойства целого не равны сумме свойств частей, хотя и зависят от них, а объединенные в систему элементы могут терять свойства, присущие им вне системы, или приобретать новые.

Нетождественность суммы качеств элементов качествам системы в целом обусловлена наличием структуры, поэтому структурные преобразования приводят к качественным, но последние могут происходить также и за счет количественных изменений. Таким образом, система может качественно изменяться, не меняя своей структуры, а в рамках одного и того же количественного состава могут существовать несколько качественных состояний.

В-седьмых, система обладает обратной связью, под которой понимается определенная реакция ее в целом или отдельных элементов на импульсы друг друга и внешние воздействия.

Теперь рассмотрим, какими бывают системы.

По характеру связей между элементами системы делятся на централизованные и децентрализованные. В первых все связи осуществляются через один центральный элемент; во вторых они могут происходить без «посредника» напрямую. Системы, где взаимосвязь элементов идет только по одной линии получили название частичных, а по многим - полных. В цепных системах каждый элемент связан не более, чем с двумя другими.

Системы, характеризующиеся преобладанием внутренних связей по сравнению внешним, где центростремительность больше центробежное, а отдельным элементам присущи общие характеристики, получили название целостных.

Системы, сохраняющиеся в целом при изменении или исчезновении одного или нескольких элементов, можно назвать стабильными, устойчивыми. Если при этом возможно восстановление утраченных элементов, то система называется регенеративной.

Изменяющиеся системы динамичны. Их элементы и они в целом могут изменяться линейно, однонаправлено с равной интенсивностью, и тогда будет наблюдаться рост, или нелинейно, разнонаправлено, с неодинаковой интенсивностью, что приводит к их качественным изменениям и развитию. Неизменные системы статичны.

С точки зрения состояния динамичные системы подразделяются на первичные, исходные, или вторичные, уже претерпевшие определенные изменения. Если система не допускает дальнейшего развития, без того, чтобы не преобразоваться в другую, она считается завершенной; если же развитие может продолжаться - незавершенной. Незавершенность может быть субстратной (преобразования могут происходить в основе элементов) и структурной (изменяется состав и соотношение элементов).

Если система сохраняет свои характеристики при изменении субстрата, она называется стационарной.

Система, состоящая из ряда разнородных элементов, называется сложной. Сложность означает, что введение новой единицы в систему не только порождает новые отношения, но и изменяет существующие. Степень сложности зависит также от взаимосвязанности этих элементов и от их числа.

Едва ли не важнейшими разновидностями систем являются механические и органические. Механические системы обладают постоянным набором неизменных элементов, четкими границами, однозначными связями, не способны изменяться и развиваться, функционируют под воздействием внешних импульсов. Выход элемента из механического целого нарушает его функционирование. Наиболее наглядный их пример - часовой механизм.

В механической системе элементы находятся во внешней связи друг с другом, не затрагивающей внутреннего существа каждого из них, и пребывают в безразличной самостоятельности. Они менее зависимы от системы, и вне ее сохраняют в неизменности свое бытие (колесико от часов может продолжительное время играть роль запасной детали).

Органические системы характеризуются противоположными качествами. В них увеличивается зависимость части от целого, а целого от части, наоборот, уменьшается. Причем, чем глубже связь частей, тем больше роль целого по отношению к ним. Кроме того, им присущи такие важные свойства, которых нет у механических систем, как способность к самоорганизации и самовоспроизведению.

В качестве образца органической системы можно привести живые существа или их сообщества. Специфической формой органической системы является социально-экономическая (общество, коллектив, организация и пр.).

Социально-экономические системы всегда являются упорядоченными, целостными, функционально и технологически неоднородными, иерархичными по структуре, динамичными с точки зрения состава и количества элементов. Подсистемы (элементы) в социально-экономических системах выделяются по тем или иным четким критериям, обычно в зависимости от их типа и целей.

Такие системы устойчивы, и в то же время постоянно развиваются, эволюционируют в более сложные образования (хотя иногда могут временно стабилизироваться или деградировать). Это развитие протекает под влиянием противоречивого взаимодействия внешних и внутренних факторов, интенсивность которого весьма различна. Поэтому оно неравномерно, может быть прерывистым, скачкообразным и не всегда предсказуемым.

Небольшие изменения в одном из элементов социальной системы могут привести к значительным последствиям для нее в целом, поэтому с помощью небольших, но продуманных действий в нужном месте и в соответствующее время легко достичь крупных желаемых результатов (теория рычага).

Для того, чтобы социальная система была динамически устойчивой, она должна обладать управляющим элементом, осуществляющим интеграцию ее отдельных звеньев, контроль за их функционированием, поступлением ресурсов, удалением отходов, получаемыми результатами, способным на основе обратной связи корректировать эти процессы. Для успеха саморазвития и самовоспроизведения системы управляющий элемент должен обладать не меньшей степенью сложности, чем управляемый. , — Системный подход, основная цель которого состоит в интеграции элементов организации, является основой современного менеджмента. Он рассматривает любую организацию как целостную совокупность различных видов деятельности и элементов, находящихся в противоречивом единстве и взаимосвязи, в рамках пространственно-временного бытия, в динамике, с учетом историчности, этапности, цикличности развития.

В силу того, что системный анализ направлен на решение любых проблем понятие системы должно быть очень общим, применимым к любым ситуациям. Выход видится в том, чтобы обозначить, перечислить, описать такие черты, свойства, особенности систем, которые, во-первых, присущи всем системам без исключения, независимо от их искусственного или естественного происхождения, материального или идеального воплощения; а во-вторых, из множества свойств были бы отобраны и включены в список по признаку их необходимости для построения и использования технологии системного анализа. Полученный список свойств можно назвать дескриптивным (описательным) определением системы.

Необходимы нам свойства системы естественно распадаются на три группы, по четыре свойства в каждой.

Статические свойства системы

Статическими свойствами назовем особенности конкретного состояния системы. Это как бы то, что можно разглядеть на мгновенной фотографии системы, то, чем обладает система в любой, но фиксированный момент времени.

Динамические свойства системы

Если рассмотреть состояние системы в другой, отличный от первого, момент времени, то мы вновь обнаружим все четыре статических свойства. Но если наложить эти две "фотографии" друг на друга, то обнаружится, что они отличаются в деталях: за время между двумя моментами наблюдения произошли какие-то изменения в системе и ее окружении. Такие изменения могут быть важными при работе с системой и, следовательно, должны быть отображены в описаниях системы и учтены в работе с нею. Особенности изменений со временем внутри системы и вне ее и именуются динамическими свойствами систем. Если статические свойства - это то, что можно увидеть на фотографии системы, то динамические-то, что обнаружится при просмотре кинофильма про систему. О любых изменениях мы имеем возможность говорить в терминах перемен в статических моделях системы. В этой связи различаются четыре динамических свойства.

Синтетические свойства системы

Этот термин обозначает обобщающие, собирательные, интегральные свойства, учитывающие сказанное раньше, но делающие упор на взаимодействия системы со средой, на целостность в самом общем понимании.

Из бесконечного числа свойств систем выделено двенадцать присущих всем системам. Они выделены по признаку их необходимости и достаточности для обоснования, построения и доступного изложения технологии прикладного системного анализа.

Но очень важно помнить, что каждая система отличается от всех других. Это проявляется, прежде всего, в том, что каждое из двенадцати общесистемных свойств в данной системе воплощается в индивидуальной форме, специфической для этой системы. Кроме того, помимо указанных общесистемных закономерностей, каждая система обладает и другими, присущими только ей свойствами.

Прикладной системный анализ нацелен на решение конкретной проблемы. Это выражается в том, что с помощью общесистемной методологии он технологически направлен на обнаружение и использование индивидуальных, часто уникальных особенностей данной проблемной ситуации.

Для облегчения такой работы можно употребить некоторые классификации систем , фиксирующие тот факт, что для разных систем следует использовать разные модели, разную технику, разные теории. Например, Р. Акофф и Д. Гарайедаги предложили различать системы по соотношению объективных и субъективных целей у частей целого: системы технические, человеко-машинные, социальные, экологические. Другая полезная классификация, по степени познанности систем и формализованности моделей, предложена У. Чеклендом: "жесткие" и "мягкие" системы и, соответственно, "жесткая" и "мягкая" методологии, обсужденные в гл. 1.

Итак, можно сказать, что системное видение мира состоит в том, чтобы, понимая его всеобщую системность, приступить к рассмотрению конкретной системы, уделяя основное внимание ее индивидуальным особенностям. Классики системного анализа сформулировали этот принцип афористически: "Думай глобально, действуй локально".

Тарасенко Ф. П. Прикладной системный анализ (наука и искусство решения проблем): Учебник. - Томск; Издательство Томского университета, 2004. ISBN 5-7511-1838-3. Фрагмент

Фундаментальным понятием ТС является понятие «система» (гр. systema – это составленное из частей, соединение).

Система - совокупность (множество) элементов, между которыми имеются связи (отношения, взаимодействие). Таким образом, под системой понимается не любая совокупность, а упорядоченная (за счёт наличия отношений).

Термины «отношение » и «взаимодействие » используются в самом широком смысле, включая весь набор родственных понятий таких как ограничение, структура, организационная связь, соединение, зависимость и т.д.

Система S представляет собой упорядоченную пару S=(A, R), где A - множество элементов; R - множество отношений между A.

Система - это полный, целостный набор элементов (компонентов), взаимосвязанных и взаимодействующих между собой так, чтобы могла реализоваться функция системы.

Система - это объективная часть мироздания, включающая схожие и совместимые элементы, образующие особое целое, которое взаимодействует с внешней средой. Допустимы и многие другие определения. Общим в них является то, что система есть некоторое правильное сочетание наиболее важных, существенных свойств изучаемого объекта.

Если собрать вместе (объединить) одно- или разнородные элементы (понятия, предметы, людей), то это не будет системой, а лишь более или менее случайным смешением. Считать ту или иную совокупность элементов системой или нет, зависит также во многом от целей исследования и точности анализа, определяемой возможностью наблюдать (описывать) систему.

Понятие «система» возникает там и тогда, где и когда мы материально или умозрительно проводим замкнутую границу между неограниченным или некоторым ограниченным множеством элементов. Те элементы с их соответствующей взаимной обусловленностью, которые попадают внутрь, - образуют систему.

Те элементы, которые остались за пределами границы, образуют множество, называемое в теории систем «системным окружением» или просто «окружением», или «внешней средой».

Из этих рассуждений вытекает, что нельзя рассматривать систему без ее внешней среды. Система формирует и проявляет свои свойства в процессе взаимодействия с окружением, являясь при этом ведущим компонентом этого воздействия.

Любая деятельность человека носит целенаправленный характер. Наиболее четко это прослеживается на примере трудовой деятельности. Цели, которые ставит перед собой человек, редко достижимы только за счет его собственных возможностей или внешних средств, имеющихся у него в данный момент. Такое стечение обстоятельств называется «проблемной ситуацией». Проблемность существующего положения осознается в несколько «стадий»: от смутного ощущения что «что-то не так», к осознанию потребности, затем к выявлению проблемы и, наконец, к формулировке цели.


Цель - это субъективный образ (абстрактная модель) несуществующего, но желаемого состояния среды, которое решило бы возникшую проблему. Вся последующая деятельность, способствующая решению этой проблемы, направлена на достижение поставленной цели, т.е. как работа по созданию системы. Другими словами: система есть средство достижения цели .

Приведем несколько упрощенных примеров систем, предназначенных для реализации определенных целей.