Печень и углеводный обмен. Обмен белков. Обмен жиров. Обмен углеводов. Печень, ее роль в обмене веществ Список использованной литературы

Введение

Основные функции печени

Участие печени в белковом обмене

Роль печени в углеводном обмене

Роль печени в липидном обмене

Печень в водно-солевом обмене

Роль печени в обмене веществ у птиц

Список использованной литературы

Введение.

Печень играет огромную роль в пищеварении и обмене веществ. Все вещества, всасывающиеся в кровь, обязательно поступают в печень и подвергаются метаболическим превращениям. В печени синтезируется различные органические вещества: белки, гликоген, жиры, фосфатиды и другие соединения. Кровь поступает в нее по печеночной артерии и воротной вене. Причем 80 % крови, идущей от органов брюшной полости, поступает по воротной вене и только 20 % - по печеночной артерии. Кровь оттекает от печени по печеночной вене.

Для изучения функций печени применяют ангиостамический метод, фистулу Экка–Павлова, при помощи которых исследуют биохимический состав притекающей и оттекающей, применяют метод катетеризации сосудов воротной системы, разработанный А. А. Алиевым.

Печени принадлежит существенная роль в обмене белков. Из аминокислот, поступающих с кровью, в печени образуется белок. В ней формируются фибриноген, протромбин, выполняющие важные функции в свертывании крови. Здесь же происходят процессы перестройки аминокислот: дезаминирование, трансаминирование, декарбоксилирование.

Печень - центральное место обезвреживания ядовитых продуктов азотистого обмена, в первую очереди аммиака, который превращается в мочевину или идет на образование амидов кислот, в печени происходит распад нуклеиновых кислот, окисление пуриновых оснований и образование конечного продукта их обмена - мочевой кислоты. Вещества (индол, скатол, крезол, фенол), поступающие из толстого отдела кишечника, соединяясь с серной и глюкуроновой кислотами, превращаются в эфирно-серные кислоты. Удаление печени из организма животных приводит к их гибели. Она наступает, по-видимому, из-за накопления в крови аммиака и других ядовитых промежуточных продуктов азотистого обмена.

Большую роль печень играет в обмене углеводов. Глюкоза, приносимая из кишечника по воротной вене, в печени превращается в гликоген. Благодаря высоким запасам гликогена печень служит основным углеводным депо организма. Гликогенная функция печени обеспечивается действием ряда ферментов и регулируется центральной нервной системой и 1 гормонами - адреналином, инсулином, глюкагоном. В случае повышенной потребности организма в сахаре, например, во время усиленной мышечной работы или при голодании гликоген под действием фермента фосфорилазы превращается в глюкозу и поступает в кровь. Таким образом, печень регулирует постоянство глюкозы в крови и нормальное обеспечение ею органов и тканей.

В печени происходит важнейшее превращение жирных кислот, из которых синтезируются жиры, свойственные для данного вида животного. Под действием фермента липазы жиры расщепляются на жирные кислоты и глицерин. Дальнейшая судьба глицерина похожа на судьбу глюкозы. Его превращение начинается с участием АТФ и заканчивается распадом до молочной кислоты с последующим окислением до углекислого газа и воды. Иногда при необходимости печень может синтезировать гликоген из молочной кислоты.

В печени также осуществляется синтез жиров и фосфатидов, которые поступают в кровь, транспортируются по всему организму. Значительную роль она играет в синтезе холестерина и его эфиров. При окислении холестерина в печени образуются желчные кислоты, которые выделяются с желчью и участвуют в процессах пищеварения.

Печень принимает участие в обмене жирорастворимых витаминов, является главным депо ретинола и его провитамина - каротина. Она способна синтезировать цианокобаламин.

Печень может задерживать в себе излишнюю воду и тем самым не допускать разжижения крови: она содержит запас минеральных солей и витаминов, участвует в пигментном обмене.

Печень выполняет барьерную функцию. Если в нее с кровью заносятся какие-либо болезнетворные микробы, то они подвергаются обеззараживанию ею. Эту функцию выполняют звездчатые клетки, расположенные в стенках кровеносных капилляров, принизывающих печеночные дольки. Захватывая ядовитые соединения, звездчатые клетки в союзе с печеночными клетками обеззараживают их. По мере необходимости звездчатые клетки выходят из стенок капилляров и, свободно передвигаясь, выполняют свою функцию.

Кроме того, печень способна переводить свинец, ртуть, мышьяк и другие ядовитые вещества - в неядовитые.

Печень является основным углеводным депо организма и регулирует постоянство глюкозы в крови. Она содержит запасы минеральных веществ и витаминов. Является депо крови, в ней образуется желчь, необходимая для пищеварения.

Регуляция обмена белков в печени осуществляется благодаря интенсивному биосинтезу в ней белков и окислению аминокислот. За сутки в организме человека образуется около 80--100 г белка, из них половина в печени. При голодании печень быстрее всех расходует свои резервные белки для снабжения аминокислотами других тканей. Потери белка в печени составляют примерно 20%; в то время как в других органах не более 4%. Белки самой печени в норме обновляются полностью каждые 20 суток. Большинство синтезированных белков печень отправляет в плазму крови. При потребности (например, при полном или белковом голодании) эти протеины так же служат источниками необходимых аминокислот.

Поступив через воротную вену в печень, аминокислоты подвергаются ряду превращений, так же значительная часть аминокислот разносится кровью по всему организму и используется для физиологических целей. Печень обеспечивает баланс свободных аминокислот организма путем синтеза заменимых аминокислот и перераспределения азота. Всосавшиеся аминокислоты в первую очередь используются в качестве строительного материала для синтеза специфических тканевых белков, ферментов, гормонов и других биологически активных соединений. Некоторое количество аминокислот подвергается распаду с образованием конечных продуктов белкового обмена (СО2, Н2О и NH3) и освобождением энергии.

Все альбумины, 75-90% б-глобулинов (б 1 -антитрипсин, б 2 -макроглобулин - ингибиторы протеаз, белки острой фазы воспаления), 50% в-глобулинов плазмы синтезируются гепатоцитами. В печени происходит синтез белковых факторов свертывания крови (протромбина, фибриногена, проконвертина, акцелератора глобулина, фактора Кристмаса, фактора Стюарта-Прауэра) и часть естественных основных антикоагулянтов (антитромбин, протеин С и др.). Гепатоциты участвуют в образовании некоторых ингибиторов фибринолиза, регуляторы эритропоэза - эритропоэтины - образуются в печени. Гликопротеин гаптоглобин, вступающий в комплекс с гемоглобином для предупреждения его выделения почками, тоже имеет печёночное происхождение. Данное соединение принадлежит к белкам острой фазы воспаления, обладает пероксидазной активностью. Церулоплазмин, также являющийся гликопротеином, синтезируемым печенью, можно считать внеклеточной супероксиддисмутазой, что позволяет защищать мембраны клеток; мало того, он стимулирует продукцию антител. Подобным действием, только на клеточный иммунитет, обладает трансферрин, полимеризация которого так же осуществляется гепатоцитами.

Ещё один углеводсодержащий белок, но с иммуносупрессивными свойствами, способен синтезироваться печенью - б-фетопротеин, рост концентрации которого в плазме крови служит ценным маркёром некоторых опухолей печени, яичек и яичников. Печень - источник большей части протеинов системы комплемента.

В печени наиболее активно протекает обмен мономеров белков - аминокислот: синтез заменимых аминокислот, синтез небелковых азотистых соединений из аминокислот (креатина, глутатиона, никотиновой кислоты, пуринов и пиримидинов, порфиринов, дипептидов, коферментов пантотената и др.), окисление аминокислот с образованием аммиака, который обезвреживается в печени при синтезе мочевины .

Итак, рассмотрим общие пути обмена аминокислот . Общие пути превращения аминокислот в печени включают реакции дезаминирования, трансаминирования, декарбоксилирования и биосинтез аминокислот.

Дезаминирование аминокислот. Доказано существование 4 типов дезаминирования аминокислот (отщепление аминогруппы) (приложение 17). Выделены соответствующие ферментные системы, катализирующие эти реакции, и идентифицированы продукты реакции. Во всех случаях NH 2 -группа аминокислоты освобождается в виде аммиака. Помимо аммиака, продуктами дезаминирования являются жирные кислоты, оксикислоты и кетокислоты.

Трансаминирование аминокислот. Под трансаминированием подразумевают реакции межмолекулярного переноса аминогруппы (NH2--) от аминокислоты на б-кетокислоту без промежуточного образования аммиака. Реакции трансаминирования являются обратимыми и протекают при участии специфических ферментов аминотрансфераз, или трансаминаз.

Пример реакции трансаминирования:

Декарбоксилирование аминокислот. Процесс отщепления карбоксильной группы аминокислот в виде СО 2 . Образующиеся продукты реакции - биогенные амины. Реакции декарбоксилирования в отличие от других процессов промежуточного обмена аминокислот являются необратимыми. Они катализируются специфическими ферментами - декарбоксилазами аминокислот.

Обезвреживание аммиака в организме . В организме человека подвергается распаду около 70 г аминокислот в сутки, при этом в результате реакций дезаминирования и окисления биогенных аминов освобождается большое количество аммиака, являющегося высокотоксичным соединением. Поэтому концентрация аммиака в организме должна сохраняться на низком уровне. Уровень аммиака в крови в норме не превышает 60 мкмоль/л. Аммиак должен подвергаться связыванию в печени с образованием нетоксичных соединений, легко выделяющихся с мочой.

Один из путей связывания и обезвреживания аммиака в организме это биосинтез глутамина (и, возможно, аспарагина). Глутамин и аспарагин выделяются с мочой в небольшом количестве. Скорее они выполняют транспортную функцию переноса аммиака в нетоксичной форме. Синтеза глутамина, катализируется глутаминсинтетазой.

Второй и основной путь обезвреживания аммиака в печени - образование мочевины, который будет рассмотрен ниже в мочевинообразовательной функции печени.

В гепатоцитах отдельные аминокислоты подвергаются специфическим преобразованиям. Из серосодержащих аминокислот образуется таурин, который позднее включается в парные жёлчные кислоты (таурохолевая, тауродезоксихолевая), а также может служить антиоксидантом, связывая гипохлорит анион, стабилизировать мембраны клеток; происходит активация метионина, который в виде S- аденозилметионина служит источником метильных групп реакциях окончания генеза креатина, синтеза холина для холинфосфатидов (липотропных веществ).

Биосинтез заменимых аминокислот. Любая из заменимых аминокислот может синтезироваться в организме в необходимых количествах. При этом углеродная часть аминокислоты образуется из глюкозы, а аминогруппа вводится из других аминокислот путем трансаминирования. Алании, аспартат, глутамат образуются из пирувата, оксалоацетата и б-кетоглутарата соответственно. Глутамин образуется из глутаминовой кислоты при действии глутаминсинтетазы:

Аспарагин синтезируется из аспарагиновой кислоты и глутамина, который служит донором амидной группы; реакцию катализирует аспарагинсинтетаза пролин образуется из глутаминовой кислоты. Гистидин (частично заменимая аминокислота) синтезируется из АТФ и рибозы: пуриновая часть АТФ поставляет фрагмент --N=CH--NH-- для имидазольного цикла гистидина; остальная часть молекулы образуется за счет рибозы.

Если в пище нет заменимой аминокислоты, клетки синтезируют ее из других веществ, и тем самым поддерживается полный набор аминокислот, необходимый для синтеза белков. Если же отсутствует хотя бы одна из незаменимых аминокислот, то прекращается синтез белков. Это объясняется тем, что в состав подавляющего большинства белков входят все 20 аминокислот; следовательно, если нет хотя бы одной из них, синтез белков невозможен.

Частично заменимые аминокислоты синтезируются в организме, однако скорость их синтеза недостаточна для обеспечения всей потребности организма в этих аминокислотах, особенно у детей. Условно заменимые аминокислоты могут синтезироваться из незаменимых: цистеин -- из метионина, тирозин -- из фенилаланина. Иначе говоря, цистеин и тирозин -- это заменимые аминокислоты при условии достаточного поступления с пищей метионина и фенилаланина .

Печень, являясь центральным органом метаболизма, участвует в поддержании метаболического гомеостаза и способна осуществлять взаимодействие реакций обмена белков, жиров и углеводов.

Местами "соединения" обмена углеводов и белков является пировиноградная кислота, щавелевоуксусная и α-кетоглутаровая кислоты из цикла трикарбоновых кислот , способных в реакциях трансаминирования превращаться, соответственно, в аланин, аспартат и глутамат. Аналогично протекает процесс превращения аминокислот в кетокислоты.

С обменом липидов углеводы связаны еще более тесно:

  • образуемые в пентозофосфатном пути молекулы НАДФН используются для синтеза жирных кислот и холестерола,
  • глицеральдегидфосфат , также образуемый в пентозофосфатном пути, включается в гликолиз и превращается в диоксиацетонфосфат,
  • глицерол-3-фосфат , образуемый из диоксиацетонфосфата гликолиза, направляется для синтеза триацилглицеролов. Также для этой цели может быть использован глицеральдегид-3-фосфат, синтезированный в этапе структурных перестроек пентозофосфатного пути,
  • "глюкозный" и "аминокислотный" ацетил-SКоА способен участвовать в синтезе жирных кислот и холестерола.

Углеводный обмен

В гепатоцитах активно протекают процессы углеводного обмена. Благодаря синтезу и распаду гликогена печень поддерживает концентрацию глюкозы в крови. Активный синтез гликогена происходит после приема пищи, когда концентрация глюкозы в крови воротной вены достигает 20 ммоль/л. Запасы гликогена в печени составляют от 30 до 100 г. При кратковременном голодании происходит гликогенолиз , в случае длительного голодания основным источником глюкозы крови является глюконеогенез из аминокислот и глицерина.

Печень осуществляет взаимопревращение сахаров, т.е. превращение гексоз (фруктозы, галактозы) в глюкозу.

Активные реакции пентозофосфатного пути обеспечивают наработку НАДФН, необходимого для микросомального окисления и синтеза жирных кислот и холестерола из глюкозы.

Липидный обмен

Если во время приема пищи в печень поступает избыток глюкозы, который не используется для синтеза гликогена и других синтезов, то она превращается в липиды – холестерол и триацилглицеролы . Поскольку запасать ТАГ печень не может, то их удаление происходит при помощи липопротеинов очень низкой плотности (ЛПОНП ). Холестерол используется, в первую очередь, для синтеза желчных кислот , также он включается в состав липопротеинов низкой плотности (ЛПНП ) и ЛПОНП .

При определенных условиях – голодание, длительная мышечная нагрузка, сахарный диабет I типа, богатая жирами диета – в печени активируется синтез кетоновых тел , используемых большинством тканей как альтернативный источник энергии.

Белковый обмен

Больше половины синтезируемого за сутки в организме белка приходится на печень. Скорость обновления всех белков печени составляет 7 суток, тогда как в других органах эта величина соответствует 17 суткам и более. К ним относятся не только белки собственно гепатоцитов, но и идущие на "экспорт", составляющие понятие "белки крови" – альбумины , многие глобулины , ферменты крови, а также фибриноген и факторы свертывания крови.

Аминокислоты подвергаются катаболическим реакциям с трансаминированием и дезаминированием , декарбоксилированию с образованием биогенных аминов . Происходят реакции синтеза холина и креатина благодаря переносу метильной группы от аденозилметионина. В печени идет утилизация избыточного азота и включение его в состав мочевины .

Реакции синтеза мочевины теснейшим образом связаны с циклом трикарбоновых кислот.

Тесное взаимодействие синтеза мочевины и ЦТК

Пигментный обмен

Участие печени в пигментном обмене заключается в превращении гидрофобного билирубина в гидрофильную форму (прямой билирубин ) и секреция его в желчь.

К пигментному обмену можно отнести и обмен железа , поскольку железо входит в состав многочисленных гемопротеинов по всему организму. В гепатоцитах находится белок ферритин , играющий роль депо железа, и синтезируется гепсидин , регулирующий всасывание железа в ЖКТ.

Оценка метаболической функции

В клинической практике существуют приемы оценки той или иной функции:

Участие в углеводном обмене оценивается:

  • по концентрации глюкозы крови,
  • по крутизне кривой теста толерантности к глюкозе,
  • по "сахарной" кривой после

Роль печени в организме человека трудно переоценить. Ведь не зря же в древнем Вавилоне и Китае было принято относиться к этому органу, как вместилищу души. В наше же время ее называют вторым сердцем человека, хотя с точки зрения анатомии это и не так.

Печень – самая большая железа организма, которая относится к пищеварительной системе. Благодаря своей уникальной анатомии она имеет очень высокие регенеративные способности.

Основные функции печени человека – это поддержание гомеостаза (постоянства внутренней среды) благодаря обеспечению белкового, жирового, углеводного и пигментного обмена веществ, а также участие в метаболизме витаминов. Этот орган участвует в дезинтоксикации, пищеварении и очищении организма. Биохимия печени очень тесно взаимосвязана с ее функциями.

Половина белка, который синтезируется в организме за сутки, образовывается именно в этом органе. Из аминокислот здесь производятся белки крови – альбумин, α и β-глобулины, факторы свертывания крови.

Также печень синтезирует и накапливает резервные аминокислоты, использующиеся при недостаточном получении белков из пищи. Если случается истощение, тяжелые отравления, кровотечения и организм нуждается в белке, печень отдает свой резерв. Потеря ею белка при голодании может составлять до 1/5 от общей массы, тогда как в других органах всего лишь до 1/25. Полностью обновляются аминокислоты в печени каждые три недели.

Одним из сложных и многозадачных белков является АФП (α-фетопротеин). Он вырабатывается в печени и обладает свойствами, подавляющими иммунитет. В крови этот белок появляется при беременности, яичников, и яичек.

Также в печени активно синтезируются заменимые аминокислоты.

Липидный обмен

Печень играет значительную роль и в жировом обмене.

Она отвечает за такие взаимообратимые процессы, такие как:

  1. синтез холестерина из жирных кислот;
  2. синтез желчных кислот из холестерина.

Эта железа принимает непосредственное участие в депонирование жира. Образование жирных кислот более активно при переваривании еды, в промежутках между приемами пищи и при голодании. Интенсивность использования жиров зависит от напряженности мышечной работы. Чем выше активность, тем больше их расходуется.

Процессы регулирования обмена жиров и углеводов зависят друг от друга. При избытке сахара усиливается выработка липидов. Если глюкоза поступает в организм в недостаточном количестве, она синтезируется из белков и жиров. Превращение углеводов в жиры происходит тогда, когда клетки органа заполнены гликогеном до отказа.

Углеводный обмен

В клетке печени (гепатоците) создается гликоген из углеводов (глюкоза, галактоза, фруктоза) - запас «на черный день». Если у организма появляется потребность в энергии, гликоген превращается обратно в глюкозу. Она тут же поступает в кровь и разносится в клетки, в которых переходит в энергию. Постоянное количество углеводов в крови регулируется в основном гормонами поджелудочной железы.

Пигментный обмен

Роль печени в пигментном обмене заключается в превращении свободного билирубина в связанный, с последующим выведением его с желчью. Непрямой билирубин образуется при распаде эритроцитов и гемоглобина, что является частью процесса постоянного обновления крови. Свободный или непрямой билирубин обладает значительной токсичностью. Он подвергается реакции конъюгации и перерабатывается в безвредный - прямой. Эта форма билирубина уже не токсична для организма.

Прямой билирубин еще называют связанным или конъюгированным. Печень принимает активное участие в выведении этого пигмента из организма через кишечник. При нарушении экскреции билирубина в организме развивается желтуха.

Если в анализе на биохимию печени повышен непрямой билирубин – это говорит об усиленном распаде эритроцитов. Такое может быть при гемолитической анемии, малярии.

Прямой билирубин повышается при желтухе, вызванной камнями в желчном пузыре.

Кровоснабжение печени уникально по причине ее особой анатомии. Только эта железа получает кровь сразу из артерии и вены. Именно благодаря данной функции печени в нашем организме постоянно происходят процессы дезинтоксикации. Этот орган заслуженно называют «фильтром», который ежедневно выполняет чистку организма от токсинов и вредных веществ путем очищения крови.

Барьерная (детоксикационная, обезвреживающая, антитоксическая) функция печени – едва ли не самая важная из выполняемых ею задач.

Обезвреживающая функция печени в организме состоит в том, что в ее клетках происходит деактивация (биотрансформация) токсических веществ. Они синтезируются организмом или поступают извне, например, лекарственные вещества, чужеродные телу человека химические соединения – ксенобиотики.

Печень принимает участие в реакции инактивации ряда биологически активных соединений: эстрогенов, андрогенов, стероидов, гормонов поджелудочной железы.

В ней происходит связывание аммиака за счет образования мочевины и креатинина. Кроме того, на этом органе лежит задача по переработке ядовитых веществ (индол, скатол, крезол, фенол), образовывающихся в процессе работы кишечной микрофлоры. Они преобразуются в безвредные соединения путем реакции конъюгации. Это нужно для того, чтобы вывести продукты обмена из организма.

Защитная функция печени выражается также и в фагоцитозе болезнетворных микроорганизмов.

Пищеварительная (метаболическая) функция

Незаменимая роль этой железы в пищеварении заключается в постоянной выработке желчи и отправке ее на хранение в желчный пузырь. В ней содержатся желчные кислоты, прямой билирубин, холестерин, вода и другие вещества. Образование желчи происходит в печеночных клетках – гепатоцитах. В них функцию ее накопления выполняет аппарат Гольджи.

После выхода из клеток печени, желчь выделяется сначала в капилляры, потом в желчные протоки. В процессе прохода по канальцам из нее извлекаются все необходимые другим органам соединения и остаются только вещества, необходимые для пищеварения и продукты жизнедеятельности организма.

Благодаря уникальной анатомии желчного пузыря в нем может накапливаться большое количество желчи между приемами пищи. Во время еды она поступает большой порцией в кишечник, тем самым улучшая пищеварительный процесс.

Важной функцией желчи является стимуляция работы кишечника. Часть желчных кислот подвергается реакции конъюгации и вместе с желчью выводится в 12-перстную кишку. Там кислота эмульгирует жиры, облегчает всасывание продуктов и их переваривание.

В составе желчи из печени выводится прямой билирубин, продукты распада токсичных веществ и ксенобиотиков.

Интересной особенностью желчи является отсутствие в ее составе ферментов.

Ферментативная функция

В печени за сутки проходит множество биохимических реакций. Некоторые продукты для таких процессов часто нужны очень быстро. Например, в экстремальных ситуациях требуется энергия, которую можно получить только при распаде молекулы глюкозы. В таких случаях на помощь нам и приходят ферменты печени, значительно ускоряющие биохимические реакции, протекающие в ее клетках.

Роль печеночных ферментов

Практически каждая биохимическая реакция катализируется (ускоряется) специфическим ферментом подходящим только ей.

В этом органе синтезируются такие ферменты, как АЛТ и АСТ. Частично синтезируются ГГТ, ЩФ. Если печеночные ферменты «вырастают» в анализе биохимии печени - это чаще всего говорит о том, что органу чего-то не хватает и нужно срочно искать причину.

Содержание АЛТ в крови при гепатитах, циррозе, желтухе, инфаркте миокарда, ожогах повышается, а понижается – при дефиците витаминов группы B. Концентрация АСТ может увеличиваться при инфаркте, гепатитах, стенокардии, тяжелых физических нагрузках и уменьшаться при и недостатке витаминов B. Анализы этих печеночных ферментов стоит рассматривать в соотношении к другу. Если уровень АЛТ превышает АСТ – это, скорее всего, заболевание печени. Если же наоборот – то сердца.

Другие функции печени

Экскреторная (выделительная) функция

Выделительная функция печени заключается в экскреции желчи вместе с другими продуктами обмена в желчные протоки, с последующим поступлением их в просвет кишечника и выведением из организма.

Обмен витаминов

Печень непосредственно участвует в синтез и всасывании жирорастворимых витаминов (A, D, E, K), а также депонирует и выводит из организма их избытки (A, D, K, C, PP). Если при питании витамины не поступают в достаточном количестве в организм, она начинает их расходовать из своих запасов.

Иммунная и аллергическая реакции

Печень принимает участие в созревании иммунных клеток (иммунопоэзе), и в иммунологических реакциях. Также от нее во многом зависит реакция организма на аллергены.

В заключение можно сказать, что печень является важнейшим органом пищеварения. Она играет огромную роль в обменных процессах организма и синтезе важных соединений, если ее работа нарушена, это сказывается на всех аспектах здоровья.

Без участия печени в метаболизме белка организм может обходиться не более нескольких дней, затем наступает летальный исход. К наиболее важным функциям печени в обмене белка относят следующие.

1. Дезаминирование аминокислот.
2. Образование мочевины и извлечение аммиака из жидких сред организма.
3. Образование белков плазмы крови.
4. Взаимное превращение различных аминокислот и синтез из аминокислот других соединений.

Предварительное дезаминирование аминокислот необходимо для их использования при получении энергии и преобразования в углеводы и жиры. В небольших количествах дезаминирование осуществляется и в других тканях организма, особенно в почках, но по значимости эти процессы несопоставимы с дезаминированием аминокислот в печени.

Образование мочевины в печени помогает извлечению аммиака из жидких сред организма. Большое количество аммиака образуется в процессе дезаминирования аминокислот, дополнительное его количество постоянно образуется бактериями в кишечнике и абсорбируется в кровь. В связи с этим если в печени мочевина не образуется, то концентрация аммиака в плазме крови начинает быстро нарастать, что приводит к печеночной коме и смерти. Даже в случае резкого снижения кровотока через печень, что иногда происходит вследствие формирования шунта между воротной и полой венами, содержание аммиака в крови резко повышается с созданием условий для токсикоза.

Все основные белки плазмы крови , за исключением некоторых гамма-глобулинов, образуются клетками печени. Их количество составляет приблизительно 90% всех белков плазмы. Остальные гамма-глобулины представляют собой антитела, образуемые главным образом плазматическими клетками лимфоидной ткани. Максимальная скорость образования белков печенью составляет 15-50 г/сут, поэтому если организм теряет около половины белков плазмы, их количество может быть восстановлено в течение 1-2 нед.

Следует учитывать, что истощение белков плазмы крови является причиной быстрого наступления митотических делений гепатоцитов и увеличения размеров печени. Этот эффект сочетается с выбросом белков плазмы крови печенью, который продолжается до тех пор, пока концентрация белков в крови не вернется к нормальным значениям. При хронических заболеваниях печени (в том числе и циррозе) уровень белков в крови, особенно альбуминов, может падать до очень низких значений, что является причиной появления генерализованных отеков и асцита.

К числу наиболее важных функций печени относится ее способность синтезировать некоторые аминокислоты наряду с химическими соединениями, в состав которых включены аминокислоты. Например, в печени синтезируются так называемые заменимые аминокислоты. В процессе такого синтеза принимают участие кетокислоты, имеющие сходную химическую структуру с аминокислотами (исключая кислород в кето-положении). Аминорадикалы проходят несколько стадий трансаминирования, перемещаясь от имеющихся в надичии аминокислот в кетокислоты на место кислорода в кето-положении.