Флуоресцентная гибридизация in situ fish. FISH – исследование для дифференциальной диагностики. Фокусировка и юстировка дуговых ламп

Современный метод цитогенетического анализа, позволяющий определять качественные и количественные изменения хромосом (в том числе транслокации и микроделеции) и используемый для дифференциальной диагностики злокачественных заболеваний крови и солидных опухолей.

Синонимы русские

Флуоресцентная гибридизация in situ

FISH-анализ

Синонимы английские

Fluorescence in-situ hybridization

Метод исследования

Флуоресцентная гибридизация in situ.

Какой биоматериал можно использовать для исследования?

Образец ткани, образец ткани в парафиновом блоке.

Как правильно подготовиться к исследованию?

Подготовки не требуется.

Общая информация об исследовании

Флуоресцентная гибридизация in situ (FISH, от англ. fluorescence in - situ hybridization) – это один из самых современных методов диагностики хромосомных аномалий. Он основан на использовании ДНК-проб, меченных флуоресцентной меткой. ДНК-пробы представляют собой специально синтезированные фрагменты ДНК, последовательность которых комплементарна последовательности ДНК исследуемых аберрантных хромосом. Таким образом, ДНК-пробы различаются по составу: для определения разных хромосомных аномалий используются разные, специфические ДНК-пробы. ДНК-пробы также различаются по размеру: одни могут быть направлены к целой хромосоме, другие – к конкретному локусу.

В ходе процесса гибридизации при наличии в исследуемом образце аберрантных хромосом происходит их связывание с ДНК-пробой, которое при исследовании с помощью флуоресцентного микроскопа определяется как флуоресцентный сигнал (положительный результат FISH-теста). При отсутствии аберрантных хромосом несвязанные ДНК-пробы в ходе реакции "отмываются", что при исследовании с помощью флуоресцентного микроскопа определяется как отсутствие флуоресцентного сигнала (отрицательный результат FISH-теста). Метод позволяет оценить не только наличие флуоресцентного сигнала, но и его интенсивность и локализацию. Таким образом, FISH-тест – это не только качественный, но и количественный метод.

FISH-тест обладает рядом преимуществ по сравнению с другими методами цитогенетики. В первую очередь, исследование FISH может быть применено как к метафазным, так и к интерфазным ядрам, то есть к неделящимся клеткам. Это основное преимущество FISH по сравнению с классическими способами кариотипирования (например, окрашиванием хромосом по Романовскому-Гимзе), которые применяются только к метафазным ядрам. Благодаря этому исследование FISH является более точным методом для определения хромосомных аномалий в тканях с низкой пролиферативной активностью, в том числе в солидных опухолях.

Так как в FISH-тесте используется стабильная ДНК интерфазных ядер, для исследования могут быть использованы самые различные биоматериалы – аспираты тонкоугольной аспирационной биопсии, мазки, аспираты костного мозга, биоптаты и, что немаловажно, сохраненные фрагменты ткани, например гистологические блоки. Так, например, FISH-тест может быть с успехом выполнен на повторных препаратах, полученных из гистологического блока биоптата молочной железы при подтверждении диагноза "аденокарцинома молочной железы" и необходимости определения HER2/neu-статуса опухоли. Следует особо подчеркнуть, что в данный момент исследование FISH рекомендовано в качестве подтверждающего теста при получении неопределенного результата иммуногистохимического исследования опухоли на онкомаркер HER2/neu(ИГХ 2+).

Другим преимуществом FISH является его способность определять микроделеции, которые не выявляются с помощью классического кариотипирования или ПЦР. Это имеет особое значение при подозрении на синдром Ди Джорджи и велокардиофациальный синдром.

FISH-тест широко используется в дифференциальной диагностике злокачественных заболеваний, в первую очередь в онкогематологии. Хромосомные аномалии в сочетании с клинической картиной и данными иммуногистохимического исследования являются основой классификации, определения тактики лечения и прогноза лимфо- и миелопролиферативнх заболеваний. Классическими примерами являются хронический миелолейкоз – t (9;22), острый промиелоцитарный лейкоз – t (15;17), хронический лимфолейкоз – трисомия 12 и другие. Что касается солидных опухолей, наиболее часто FISH-исследование применяется при диагностике рака молочной железы, мочевого пузыря, толстой кишки, нейробластомы, ретинобластомы и других.

Исследование FISH также может быть использовано в пренатальной и преимплантационной диагностике.

FISH-тест часто проводят в сочетании с другими методами молекулярной и цитогенетической диагностики. Результат этого исследования оценивают в комплексе с результатами дополнительных лабораторных и инструментальных данных.

Для чего используется исследование?

  • Для дифференциальной диагностики злокачественных заболеваний (крови и солидных органов).

Когда назначается исследование?

  • При подозрении на наличие злокачественного заболевания крови или солидных опухолей, тактика лечения и прогноз которых зависит от хромосомного состава опухолевого клона.

Что означают результаты?

Положительный результат:

  • Наличие в исследуемом образце аберрантных хромосом.

Отрицательный результат:

  • Отсутствие в исследуемом образце аберрантных хромосом.

Что может влиять на результат?

  • Количество аберрантных хромосом.

  • Иммуногистохимическое исследование клинического материала (с использованием 1 антитела)
  • Иммуногистохимическое исследование клинического материала (с использованием 4 и более антител)
  • Определение HER2 статуса опухоли методом FISH
  • Определение HER2 статуса опухоли методом СISH

Кто назначает исследование?

Онколог, педиатр, акушер-гинеколог, врач-генетик.

Литература

  • Wan TS, Ma ES. Molecular cytogenetics: an indispensable tool for cancer diagnosis. Anticancer Res. 2005 Jul-Aug;25(4):2979-83.
  • Kolialexi A, Tsangaris GT, Kitsiou S, Kanavakis E, Mavrou A. Impact of cytogenetic and molecular cytogenetic studies on hematologic malignancies. Chang Gung Med J. 2012 Mar-Apr;35(2):96-110.
  • Mühlmann M. Molecular cytogenetics in metaphase and interphase cells for cancer and genetic research, diagnosis and prognosis. Application in tissue sections and cell suspensions. Genet Mol Res. 2002 Jun 30;1(2):117-27.
  • Флуоресце́нтная гибридиза́ция in situ, или метод FISH (англ. fluorescence in situ hybridization - FISH), - цитогенетический метод, который применяют для детекции и определения положения специфической последовательности ДНК на метафазных хромосомах или в интерфазных ядрах in situ. Кроме того, FISH используют для выявления специфических мРНК в образце ткани. В последнем случае метод FISH позволяет установить пространственно-временные особенности экспрессии генов в клетках и тканях.

    Метод FISH используют в преимплантационной, пренатальной и постнатальной генетической диагностике, в диагностике онкологических заболеваний, в ретроспективной биологической дозиметрии.

Связанные понятия

Микроядро - в цитологии фрагмент ядра в эукариотической клетке, не содержащий полного генома, необходимого для её выживания. Является патологической структурой и может наблюдаться в клетках любых тканей. Обычно микроядра образуются в результате неправильного хода клеточного деления или фрагментации ядра в процессе апоптоза.

Гомологи́чная рекомбина́ция , или о́бщая рекомбина́ция, - тип генетической рекомбинации, во время которой происходит обмен нуклеотидными последовательностями между двумя похожими или идентичными хромосомами. Это наиболее широко используемый клетками способ устранения двух- или однонитевых повреждений ДНК. Гомологичная рекомбинация также создает разнообразие комбинаций генов во время мейоза, обеспечивающих высокий уровень наследственной изменчивости, что, в свою очередь, позволяет популяции лучше адаптироваться...

Космиды (Cosmides) - плазмиды, содержащие фрагмент ДНК фага лямбда включая cos-участок. Вместе с системами упаковки в фаговые частицы in vitro используются как векторные молекулы для клонирования генов и при построении геномных библиотек. Космиды были впервые сконструированы Коллинсом и Брюнингом в 1978 году. Их название происходит от сокращения двух терминов: cos-участок (сам термин в свою очередь происходит от англ. cohesive ends - липкие концы) и плазмида.

В связи с накоплением огромного количества информации о последовательностях генов, в настоящее время, для выявления функций генов, часто используют методы обратной генетики. Исследователи манипулируют последовательностями генов, изменяя или выключая тот или иной ген, и анализируют, к каким изменениям это приводит. Это путь обратной генетики: от гена к признаку/фенотипу. Прямая и обратная генетика – не взаимоисключающие подходы, а дополняющие друг друга в изучении функции гена.
(англ. transformation) - процесс поглощения бактериальной клеткой молекулы ДНК из внешней среды. Для того, чтобы быть способной к трансформации, клетка должна быть компетентной, то есть молекулы ДНК должны иметь возможность проникнуть в неё через клеточные покровы. Трансформация активно используется в молекулярной биологии и генетической инженерии.

Негомологи́чное соедине́ние концо́в , или негомологи́чное воссоедине́ние концо́в (англ. non-homologous end joining, NHEJ) - один из путей репарации двунитевых разрывов в ДНК. Негомологичным этот процесс называется потому, что повреждённые концы цепи соединяются лигазой напрямую, не нуждаясь в гомологичном шаблоне, в отличие от процесса гомологичной рекомбинации. Термин «негомологичное соединение концов» был предложен в 1996 году Муром и Хабером. NHEJ существенно менее точен, чем гомологичная рекомбинация...

Кулли́ны (англ. cullins) - семейство гидрофобных белков, служащих скэффолдом для убиквитинлигаз (E3). Все эукариоты, как представляется, имеют куллины. Они в сочетании с RING-белками образуют куллин-RING убиквитинлигазы (CRL), которые весьма разнообразны и играют роль во многих клеточных процессах, например, протеолизе (они разрушают около 20 % клеточных белков), эпигенетической регуляции, работе иммунитета растений, опосредованного салициловой кислотой.

Секвенирование нового поколения (англ. next generation sequencing, NGS) - техника определения нуклеотидной последовательности ДНК и РНК для получения формального описания её первичной структуры. Технология методов секвенирования нового поколения (СНП) позволяет «прочитать» единовременно сразу несколько участков генома, что является главным отличием от более ранних методов секвенирования. СНП осуществляется с помощью повторяющихся циклов удлинения цепи, индуцированного полимеразой, или многократного...

Квантеферон (иногда квантиферон, квантифероновый тест; англ. QuantiFERON) - торговое название иммуноферментного диагностического теста туберкулезной инфекции, производимого американской компанией QIAGEN. Текст использует технологию ELISA для обнаружения гамма-интерферонов иммунного ответа.

Метод гибридизации in situ* (на месте, лат.) основан на способности ДНК или РНК образовывать устойчивые гибридные молекулы с ДНК / РНК - зондами непосредственно на препаратах фиксированных хромосом и интерфазных ядер. С помощью этого метода можно определить точное местоположение практически любой последовательности ДНК или РНК непосредственно в клетке, клеточном ядре или на хромосомах.

Для проведения гибридизации in situ пригодны цитологические или гистологические препараты клеток любых тканей или органов, приготовленные по стандартным методикам. В условиях клинической цитогенетической лаборатории используют препараты культивированных лимфоцитов периферической крови, клеток цитотрофобласта хорионального эпителия, культивированных и некультивированных клеток амниотической жидкости, различных тканей из абортного материала, а также мазков клеток буккального эпителия и крови.

Метод гибридизации in situ имеет особое значение для практической цитогенетики, благодаря разработке неизотопного варианта, основанного на использовании зондов, меченных нерадиоактивными модифицированными нуклеотидами. Неизотопные варианты гибридизации на препаратах (в особенности флюоресцентные) имеют ряд преимуществ по сравнению с изотопными: большую разрешающую способность, которая равна разрешающей способности микроскопа (0,1 - 0,2 мкм), отсутствие необходимости в статистической обработке результатов, быстроту и безопасность для здоровья исследователей

Кроме того, комбинация различно модифицированных проб, выявляемых с помощью разных систем детекции, позволяет одновременно определять местоположение двух и более последовательностей ДНК в одной клетке или на одной метафазной пластинке. А использование в качестве ДНК-зондов повторяющихся последовательностей, меченых флюорохромами, сокращает время проведения процедуры до 7 - 9 часов (классический неизотопный вариант гибридизации занимает два дня, изотопные варианты от недели до месяца), что особенно важно для пренатальной диагностики. Использование метода FISH в цитогенетической диагностике позволяет идентифицировать структурные хромосомные перестройки, устанавливать природу маркерных хромосом, проводить анализ численных нарушений хромосомного набора, как на метафазных хромосомах, так и в интерфазных ядрах.

Принцип FISH-метода

В основе FISH-метода лежит реакция гибридизации между искусственно созданным ДНК-зондом и комплементраной ему нуклеотидной последовательностью ядерной ДНК. Молекула ДНК представляет собой две спирально соединенные нуклеотидные цепи, а гибридизация возможна только в том случае, если цепи разойдутся. Чтобы разъединить нуклеотидные цепи ДНК прибегают к денатурации (для последующей гибридизации денатурированной должна быть как ДНК в ядрах исследуемого образца, так и сам ДНК-зонд). После денатурации ДНК-зонд гибридизуется с комплементарной ему нуклеотидной последовательностью и может быть обнаружен при помощи флуоресцентного микроскопа.

Таким образом, общий вид протокола для постановки FISH можно представить в следующем виде:

1. Подготовка гистологического или цитологического препарата.
Подготовка гистологического препарата осуществляется по стандартной схеме: вырезка, маркировка, проводка, заливка, микротомия, помещение среза на предметное стекло и депарафинизация. При подготовке цитологического препарата используются специальные осаждающие растворы и центрифугирование, что позволяет получить концентрированную суспензию клеток.

2. Предварительная обработка (если необходимо).
Препарат обрабатывается протеазами, чтобы исключить присутствие белков, которые затрудняют гибридизацию.

3. Нанесение ДНК-зонда на препарат и последующая денатурация.
Для того, чтобы денатурировать зонд и ДНК образца, их обрабатывают формамидом и нагревают до температуры около 85-90°С.

4. Гибридизация.
После денатурации препарат охлаждают до определенной температуры (37°С в случае клинических исследований) и инкубируют во влажной камере в течение нескольких часов (продолжительность инкубации указана в каждом конкретном протоколе). В настоящее время для денатурации и гибридизации используют автоматические гибридайзеры.

5. Промывка.
После того, как гибридизация завершена, необходимо отмыть несвязавшиеся зонды, которые, в противном случае, создадут фон, затрудняющий оценку результатов FISH-анализа. Для промывки обычно используют раствор, содержащий цитрат и хлорид натрия (SSC).

6. Контр-окрашивание.
При помощи флуоресцентных красителей (DAPI - 4,6-диамидин-2-фенилиндол; йодид пропидия) проводится окраска всей ядерной ДНК.

7. Анализ результатов при помощи флуоресцентного микроскопа. Выполнение рутинных операций (депарафинизация, предварительная обработка, промывка) может быть автоматизировано.

* - Материал подготовлен на основе информации открытых источников.

Метод определения флуоресцентная гибридизация in situ.

Исследуемый материал Смотрите в описании

Доступен выезд на дом

Исследование применяется для подбора индивидуальной адъювантной химиотерапии при раке молочной железы или при раке желудка.

Рак молочной железы (РМЖ) занимает первое место среди онкологических заболеваний у женщин. Клетки опухолей молочной железы могут содержать различные типы рецепторов, которые чувствительны к определенным веществам (гормонам или другим биологически активным молекулам). В зависимости от наличия в опухолевых клетках рецепторов гормонов (эстрогенов и прогестерона) или рецептора эпидермального фактора роста человека тип 2 (Human Epidermal Growth Factor Receptor 2, HER2), выделяют гормон-рецептор-положительный, HER2-положительный и тройной негативный РМЖ. Это важно учитывать при индивидуальном подборе терапии и для прогноза успеха лечения.

HER2 - это рецептор, который присутствует в тканях и в норме, участвуя в регуляции деления и дифференцировки клеток. Его избыток на поверхности опухолевых клеток (гиперэкспрессия) предопределяет быстрый неконтролируемый рост новообразования, высокий риск метастазирования и низкую эффективность некоторых видов лечения. Гиперэкспрессия HER2 при некоторых подтипах РМЖ ведет к усилению пролиферации и ангиогенеза, а также к нарушению регуляции апоптоза (генетически запрограммированного самоуничтожения клеток). В настоящее время имеются препараты, мишенью которых является рецептор HER2. Это, в частности, герцептин (трастузумаб), представляющий собой моноклональные антитела против HER2/neu рецепторов.

Амплификация и гиперэкспрессия онкогена HER2 (ЕrbB-2) являются относительно специфическими событиями для карциномы молочной железы и практически не встречаются в опухолях других локализаций. Рак желудка (РЖ) – одно из немногих исключений: активация HER2 отмечается примерно в 10-15% случаев злокачественных новообразований этого органа и коррелирует с агрессивным течением заболевания. При HER2-положительном раке молочной железы на поверхности опухолевых клеток может присутствовать избыток HER2-рецепторов (что обозначается как положительный HER2-статус, или положительный герцепт-статус). Это явление наблюдается у 15-20% женщин, страдающих РМЖ. Оценка HER2-статуса важна для определения тактики лечения.

Основные стандартизованные методы выявления гиперэкспрессии HER2/neu и/или амплификации гена HER2/neu – иммуногистохимический (ИГХ) метод и флуоресцентная гибридизация in situ (FISH). Оба исследования проводятся на гистологических препаратах (срезах материала опухоли, залитого в парафин) с использованием поликлональных антител (ИГХ), флуоресцентных зондов (FISH) и разных систем визуализации.

При оценке результатов ИГХ-реакции учитывается экспрессия только в инвазивном компоненте опухоли. Оценка результатов реакции проводится с помощью балльной шкалы: 0, 1+, 2+, 3+, разработанной производителем теста и получившей одобрение экспертов. Герцепт-статус, оцененный как 0 и 1+, следует считать негативным – гиперэкспрессия белка отсутствует, что соотносится с отсутствием амплификации его гена. Герцепт-статус, оцененный как 3+, является позитивным, т. е. гиперэкспрессия белка присутствует, что соотносится с наличием амплификации гена. Герцепт-статус 2+ считается неопределенным, т. е. по экспрессии белка, определенной на основании иммуногистохимической реакции, нельзя уверенно судить об амплификации гена, поэтому требуется исследование, прямо выявляющее наличие или отсутствие амплификации. FISH-метод применяют на срезах с того же образца (блока), на котором проводилось иммуногистохимическое исследование. При FISH-гибридизации оценку наличия амплификации гена HER2 проводят путем подсчета соотношения красных флуоресцентных (соответствующих помеченным генам HER2) и зеленых флуоресцентных сигналов, которыми помечен центромерный участок 17-й хромосомы. Соотношение больше 2 свидетельствует о наличии амплификации HER2. Метод FISH является более чувствительным, чем ИГХ, так как позволяет напрямую оценивать наличие или отсутствие амплификации.

Материал для исследования: парафиновый блок с биоптатом опухоли.

Внимание! ОБЯЗАТЕЛЬНО:

  • предметное стекло с ИГХ-окрашиванием с антителами к HER2/neu
  • направление от врача или выписка с результатами гистологического и ИГХ-исследования с антителами к Her-2/neu

Литература

  • Завалишина Л.Э., Франк Г.А. Морфологическое исследование HER2 статуса. Методика и атлас. - М.: Изд. «Media Medica». 2006:98.
  • Злокачественные заболевания в России в 2011 году (заболеваемость и смертность). Под ред. В.И. Чиссова, В.В. Старинского, Г.В. Петровой. - М.: ФГБУ «МНИОИ им. П.А. Герцена» Минздрава России. 2013:289.
  • Онкология. Клинические рекомендации. Ассоциация онкологов России. Под ред. В.И. Чиссова, С.Л. Дарьяловой. - М.: Изд. «ГЭОТАР-Медиа». 2008:702.
  • Bang Y.J., Van Cutsem E., Feyereislova A., Chung H.C., Shen L., Sawaki A. et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet. 2010;376:687-697.
  • Dabbs D.J. Diagnostic Immunohistochemistry: Theranostic and Genomic Applications. Elsevier, 4-th Edition. 2013:960.
  • Ferlay J., Shin H.R., Bray F., Forman D., Mathers C., Parkin D.M. GLOBOCAN 2008, Cancer Incidence and Mortality Worldwide: IARC Cancer Base № 10. Lyon, France: International Agency for Research on Cancer; 2010. Available from: http://globocan.iarc.fr.
  • Goldhirsch A., Glick J.H., Gelber R.D., Coates A.S., Thurlimann В., Senn H.J. Meeting Highlights: International Expert Consensus on the Primary Therapy of Early Breast Cancer 2005. Annals of Oncology. 2005;16(10):1569-1583.
  • Kurman R.J., Carcangiu M.L., Herrington C.S., Young R.H. WHO Classification of Tumours of the Female Reproductive Organs. WHO Press, 4-th Edition. 2014;4:316.
  • NordiQC. http://www.nordiqc.org.
  • Park D.I., Yun J.W., Park J.H. et al. Her2/neu amplification is an independent prognostic factor in gastric cancer. Digestive Diseases and Sciences. 2006;51(8):1371-1379.
  • Slamon D. et al. Adjuvant Trastuzumab in HER2-Positive Breast Cancer. The New England Journal of Medicine. 2011;365:1273-1283.